Error minimization in Bluetooth based indoor localization of a mobile robot using Cuckoo Search algorithm

Author(s):  
Devanshi Mankotia ◽  
Sunil Agrawal ◽  
Sarvjit Singh
2018 ◽  
Vol 7 (3.13) ◽  
pp. 27
Author(s):  
Asst. Pro.Dr.Ekhlas H.Karam ◽  
Noor. M.Mjeed

In this paper, a robust Radial Basis Function (RBF) Backstepping Sliding Mode controller (BS-SMC) is successfully developed for the attitude stabilization and tracking the trajectory of two wheeled self-balancing mobile robot under the external disturbance and uncertainty. The design of BS control is derived based on Lyapunov function to ensure the stability of the robot system and the SMC is designed with a switching function in order to attenuate the effects of the disturbances,   the auto-adjustable RBF inference system is suggested to estimate the equivalent component of the BS-SMC to treat the model dependency problem and robustness improvement. Also a cuckoo search (CS) optimization algorithm is used to determine the optimal values of the backsteeping sliding mode controller. Numerical simulations show the efficiency of the suggested controller in handling the balance and tracking problems of the two wheeled self-balancing mobile robot  


2020 ◽  
Vol 39 (6) ◽  
pp. 8125-8137
Author(s):  
Jackson J Christy ◽  
D Rekha ◽  
V Vijayakumar ◽  
Glaucio H.S. Carvalho

Vehicular Adhoc Networks (VANET) are thought-about as a mainstay in Intelligent Transportation System (ITS). For an efficient vehicular Adhoc network, broadcasting i.e. sharing a safety related message across all vehicles and infrastructure throughout the network is pivotal. Hence an efficient TDMA based MAC protocol for VANETs would serve the purpose of broadcast scheduling. At the same time, high mobility, influential traffic density, and an altering network topology makes it strenuous to form an efficient broadcast schedule. In this paper an evolutionary approach has been chosen to solve the broadcast scheduling problem in VANETs. The paper focusses on identifying an optimal solution with minimal TDMA frames and increased transmissions. These two parameters are the converging factor for the evolutionary algorithms employed. The proposed approach uses an Adaptive Discrete Firefly Algorithm (ADFA) for solving the Broadcast Scheduling Problem (BSP). The results are compared with traditional evolutionary approaches such as Genetic Algorithm and Cuckoo search algorithm. A mathematical analysis to find the probability of achieving a time slot is done using Markov Chain analysis.


Author(s):  
Yang Wang ◽  
Feifan Wang ◽  
Yujun Zhu ◽  
Yiyang Liu ◽  
Chuanxin Zhao

AbstractIn wireless rechargeable sensor network, the deployment of charger node directly affects the overall charging utility of sensor network. Aiming at this problem, this paper abstracts the charger deployment problem as a multi-objective optimization problem that maximizes the received power of sensor nodes and minimizes the number of charger nodes. First, a network model that maximizes the sensor node received power and minimizes the number of charger nodes is constructed. Second, an improved cuckoo search (ICS) algorithm is proposed. This algorithm is based on the traditional cuckoo search algorithm (CS) to redefine its step factor, and then use the mutation factor to change the nesting position of the host bird to update the bird’s nest position, and then use ICS to find the ones that maximize the received power of the sensor node and minimize the number of charger nodes optimal solution. Compared with the traditional cuckoo search algorithm and multi-objective particle swarm optimization algorithm, the simulation results show that the algorithm can effectively increase the receiving power of sensor nodes, reduce the number of charger nodes and find the optimal solution to meet the conditions, so as to maximize the network charging utility.


Sign in / Sign up

Export Citation Format

Share Document