Performance Assessment of Machine-Type Communication Data Traffic in a Small Cell Field Environment

Author(s):  
Meghna Sarkar ◽  
Prakash Nagarajan ◽  
Rajesh P ◽  
Rakesh Hanumantha
Symmetry ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 593 ◽  
Author(s):  
Kingsley A. Ogudo ◽  
Dahj Muwawa Jean Nestor ◽  
Osamah Ibrahim Khalaf ◽  
Hamed Daei Kasmaei

With the advancement of new technologies, the number of connected devices, the amount of data generated, and the need to build an intelligently connected network of things to improve and enrich the human ecosystem open new doors to modifications and adaptations of current cellular network infrastructures. While more focus is given to low power wide area (LPWA) applications and devices, a significant challenge is the definition of Internet of Things (IoT) use cases and the value generation of applications on already existing IoT devices. Smartphones and related devices are currently manufactured with a wide range of smart sensors such as accelerometers, video sensors, compasses, gyros, proximity sensors, fingerprint sensors, temperature sensors, and biometric sensors used for various purposes. Many of these sensors can be automatically expanded to monitor a user’s daily activities (e.g., fitness workouts), locations, movements, and real-time body temperatures. Mobile network operators (MNOs) play a substantial role in providing IoT communications platforms, as they manage traffic flow in the network. In this paper, we discuss the global concept of IoT and machine-type communication (MTC), and we conduct device performance analytics based on data traffic collected from a cellular network. The experiment equips service providers with a model and framework to monitor device performance in a network.


Author(s):  
Xu Chen ◽  
Zhiyong Feng ◽  
Zhiqing Wei ◽  
Ping Zhang ◽  
Xin Yuan

Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7336
Author(s):  
Mincheol Paik ◽  
Haneul Ko

Frequent location updates of individual Internet of Things (IoT) devices can cause several problems (e.g., signaling overhead in networks and energy depletion of IoT devices) in massive machine type communication (mMTC) systems. To alleviate these problems, we design a distributed group location update algorithm (DGLU) in which geographically proximate IoT devices determine whether to conduct the location update in a distributed manner. To maximize the accuracy of the locations of IoT devices while maintaining a sufficiently small energy outage probability, we formulate a constrained stochastic game model. We then introduce a best response dynamics-based algorithm to obtain a multi-policy constrained Nash equilibrium. From the evaluation results, it is demonstrated that DGLU can achieve an accuracy of location information that is comparable with that of the individual location update scheme, with a sufficiently small energy outage probability.


2017 ◽  
pp. 127-144
Author(s):  
Hüsnü Yıldız ◽  
Adnan Kılıç ◽  
Ertan Onur

2021 ◽  
Author(s):  
Jie Ding ◽  
Jinho Choi

<div>In this paper, a successive interference cancellation (SIC) aided K-repetition scheme is proposed to support contention-based mission-critical machine-type communication (MTC) in cell-free (CF) massive multiple-input and multipleoutput (MIMO) systems. With the assistance of a tailored deep neural network (DNN) based preamble multiplicity estimator, the proposed SIC in K-repetition is capable of fully cancelling the interference signals, which leads to the reliability improvement in CF massive MIMO. Simulation results show the accuracy of preamble multiplicity estimation by the proposed DNN, and</div><div>demonstrate that, compared to the existing schemes, the proposed SIC scheme can achieve an improvement of two orders of magnitude in terms of block error rate (BLER) under a given latency constraint. Moreover, when the number of access points (APs) is sufficiently large, employing the proposed SIC scheme provides a great potential to meet ultra-reliable and low-latency requirements, e.g., 10<sup>-5 </sup>BLER and 1 ms access latency, for crowd mission-critical applications, which is far beyond the capabilities of the existing schemes.</div>


Sign in / Sign up

Export Citation Format

Share Document