scholarly journals A Device Performance and Data Analytics Concept for Smartphones’ IoT Services and Machine-Type Communication in Cellular Networks

Symmetry ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 593 ◽  
Author(s):  
Kingsley A. Ogudo ◽  
Dahj Muwawa Jean Nestor ◽  
Osamah Ibrahim Khalaf ◽  
Hamed Daei Kasmaei

With the advancement of new technologies, the number of connected devices, the amount of data generated, and the need to build an intelligently connected network of things to improve and enrich the human ecosystem open new doors to modifications and adaptations of current cellular network infrastructures. While more focus is given to low power wide area (LPWA) applications and devices, a significant challenge is the definition of Internet of Things (IoT) use cases and the value generation of applications on already existing IoT devices. Smartphones and related devices are currently manufactured with a wide range of smart sensors such as accelerometers, video sensors, compasses, gyros, proximity sensors, fingerprint sensors, temperature sensors, and biometric sensors used for various purposes. Many of these sensors can be automatically expanded to monitor a user’s daily activities (e.g., fitness workouts), locations, movements, and real-time body temperatures. Mobile network operators (MNOs) play a substantial role in providing IoT communications platforms, as they manage traffic flow in the network. In this paper, we discuss the global concept of IoT and machine-type communication (MTC), and we conduct device performance analytics based on data traffic collected from a cellular network. The experiment equips service providers with a model and framework to monitor device performance in a network.

2018 ◽  
Vol 10 (10) ◽  
pp. 3626 ◽  
Author(s):  
Yousaf Zikria ◽  
Sung Kim ◽  
Muhammad Afzal ◽  
Haoxiang Wang ◽  
Mubashir Rehmani

The Fifth generation (5G) network is projected to support large amount of data traffic and massive number of wireless connections. Different data traffic has different Quality of Service (QoS) requirements. 5G mobile network aims to address the limitations of previous cellular standards (i.e., 2G/3G/4G) and be a prospective key enabler for future Internet of Things (IoT). 5G networks support a wide range of applications such as smart home, autonomous driving, drone operations, health and mission critical applications, Industrial IoT (IIoT), and entertainment and multimedia. Based on end users’ experience, several 5G services are categorized into immersive 5G services, intelligent 5G services, omnipresent 5G services, autonomous 5G services, and public 5G services. In this paper, we present a brief overview of 5G technical scenarios. We then provide a brief overview of accepted papers in our Special Issue on 5G mobile services and scenarios. Finally, we conclude this paper.


2019 ◽  
Vol 15 (4) ◽  
pp. 155014771984186
Author(s):  
Qi Pan ◽  
Xiangming Wen ◽  
Zhaoming Lu ◽  
Wenpeng Jing ◽  
Haijun Zhang

2017 ◽  
Vol 2017 ◽  
pp. 1-21 ◽  
Author(s):  
Probidita Roychoudhury ◽  
Basav Roychoudhury ◽  
Dilip Kumar Saikia

In view of the exponential growth in the volume of wireless data communication among heterogeneous devices ranging from smart phones to tiny sensors across a wide range of applications, 3GPP LTE-A has standardized Machine Type Communication (MTC) which allows communication between entities without any human intervention. The future 5G cellular networks also envisage massive deployment of MTC Devices (MTCDs) which will increase the total number of connected devices hundredfold. This poses a huge challenge to the traditional cellular system processes, especially the traditional Mutual Authentication and Key Agreement (AKA) mechanism currently used in LTE systems, as the signaling load caused by the increasingly large number of devices may have an adverse effect on the regular Human to Human (H2H) traffic. A solution in the literature has been the use of group based architecture which, while addressing the authentication traffic, has their share of issues. This paper introduces Hierarchical Group based Mutual Authentication and Key Agreement (HGMAKA) protocol to address those issues and also enables the small cell heterogeneous architecture in line with 5G networks to support MTC services. The aggregate Message Authentication Code based approach has been shown to be lightweight and significantly efficient in terms of resource usage compared to the existing protocols, while being robust to authentication message failures, and scalable to heterogeneous network architectures.


2016 ◽  
Vol 78 ◽  
pp. 73-82 ◽  
Author(s):  
F.G. Scrimgeour

This paper provides a stocktake of the status of hill country farming in New Zealand and addresses the challenges which will determine its future state and performance. It arises out of the Hill Country Symposium, held in Rotorua, New Zealand, 12-13 April 2016. This paper surveys people, policy, business and change, farming systems for hill country, soil nutrients and the environment, plants for hill country, animals, animal feeding and productivity, and strategies for achieving sustainable outcomes in the hill country. This paper concludes by identifying approaches to: support current and future hill country farmers and service providers, to effectively and efficiently deal with change; link hill farming businesses to effective value chains and new markets to achieve sufficient and stable profitability; reward farmers for the careful management of natural resources on their farm; ensure that new technologies which improve the efficient use of input resources are developed; and strategies to achieve vibrant rural communities which strengthen hill country farming businesses and their service providers. Keywords: farming systems, hill country, people, policy, productivity, profitability, sustainability


Author(s):  
Natalya Ivanovna Shaposhnikova ◽  
Alexander Aleksandrovich Sorokin

The article consideres the problems of determining the need to modernize the base stations of the cellular network based on the mathematical apparatus of the theory of fuzzy sets. To improve the quality of telecommunications services the operators should send significant funding for upgrading the equipment of base stations. Modernization can improve and extend the functions of base stations to provide cellular communication, increase the reliability of the base station in operation and the functionality of its individual elements, and reduce the cost of maintenance and repair when working on a cellular network. The complexity in collecting information about the equipment condition is determined by a large number of factors that affect its operation, as well as the imperfection of obtaining and processing the information received. For a comprehensive assessment of the need for modernization, it is necessary to take into account a number of indicators. In the structure of indicators of the need for modernization, there were introduced the parameters reflecting both the degree of aging and obsolescence(the technical gap and the backlog in connection with the emergence of new technologies and standards). In the process of a problem solving, the basic stages of decision-making on modernization have been allocated. Decision-making on the need for modernization is based not only on measuring information that takes into account the decision-makers, but also on linguistic and verbal information. Therefore, to determine the need for upgrading the base stations, the theory of fuzzy sets is used, with the help of which experts can be attracted to this issue. They will be able to formulate additional fuzzy judgments that help to take into account not only measuring characteristics, but also poorly formalized fuzzy information. To do this, the main indicators of the modernization need have been defined, and fuzzy estimates of the need for modernization for all indicators and a set of indicators reflecting the need for upgrading the base stations have been formulated.


2013 ◽  
Vol 16 (1) ◽  
pp. 59-67

<p>The Soil Science Institute of Thessaloniki produces new digitized Soil Maps that provide a useful electronic database for the spatial representation of the soil variation within a region, based on in situ soil sampling, laboratory analyses, GIS techniques and plant nutrition mathematical models, coupled with the local land cadastre. The novelty of these studies is that local agronomists have immediate access to a wide range of soil information by clicking on a field parcel shown in this digital interface and, therefore, can suggest an appropriate treatment (e.g. liming, manure incorporation, desalination, application of proper type and quantity of fertilizer) depending on the field conditions and cultivated crops. A specific case study is presented in the current work with regards to the construction of the digitized Soil Map of the regional unit of Kastoria. The potential of this map can easily be realized by the fact that the mapping of the physicochemical properties of the soils in this region provided delineation zones for differential fertilization management. An experiment was also conducted using remote sensing techniques for the enhancement of the fertilization advisory software database, which is a component of the digitized map, and the optimization of nitrogen management in agricultural areas.</p>


Author(s):  
Xu Chen ◽  
Zhiyong Feng ◽  
Zhiqing Wei ◽  
Ping Zhang ◽  
Xin Yuan

Sign in / Sign up

Export Citation Format

Share Document