A wind tunnel sensor network for a cost-effective evaluation of aircraft drag reduction from riblets

Author(s):  
Antonio Pagano ◽  
Carmelo Izzo
Aerospace ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 66
Author(s):  
Patrick Pölzlbauer ◽  
Andreas Kümmel ◽  
Damien Desvigne ◽  
Christian Breitsamter

The present work is part of the Clean Sky 2 project Full-Fairing Rotor Head Aerodynamic Design Optimization (FURADO), which deals with the aerodynamic design optimization of a full-fairing rotor head for the Rapid And Cost-Effective Rotorcraft (RACER) compound helicopter. The rotor head is a major drag source and previous investigations have revealed that the application of rotor head fairings can be an effective drag reduction measure. As part of the full-fairing concept, a new blade-sleeve fairing was aerodynamically optimized for cruise flight. Within this publication, the newly developed blade-sleeve fairing is put to test on an isolated, five-bladed rotor head and compared to an already existing reference blade-sleeve fairing, which was developed at Airbus Helicopters. Numerical flow simulations are performed with ANSYS Fluent 2019 R2 considering a rotating rotor head with cyclic pitch movement. The aerodynamic forces of the isolated rotor head are analyzed to determine the performance benefit of the newly developed blade-sleeve fairing. A drag reduction of 4.7% and a lift increase of 20% are obtained in comparison to the Airbus Helicopters reference configuration. Furthermore, selected surface and flow field quantities are presented to give an overview on the occurring flow phenomena.


2016 ◽  
Vol 162 ◽  
pp. 561-569 ◽  
Author(s):  
Aaron M. Hendricks ◽  
John E. Wagner ◽  
Timothy A. Volk ◽  
David H. Newman ◽  
Tristan R. Brown

Author(s):  
Hemavathi P ◽  
Nandakumar A. N.

Clustering is one of the operations in the wireless sensor network that offers both streamlined data routing services as well as energy efficiency. In this viewpoint, Particle Swarm Optimization (PSO) has already proved its effectiveness in enhancing clustering operation, energy efficiency, etc. However, PSO also suffers from a higher degree of iteration and computational complexity when it comes to solving complex problems, e.g., allocating transmittance energy to the cluster head in a dynamic network. Therefore, we present a novel, simple, and yet a cost-effective method that performs enhancement of the conventional PSO approach for minimizing the iterative steps and maximizing the probability of selecting a better clustered. A significant research contribution of the proposed system is its assurance towards minimizing the transmittance energy as well as receiving energy of a cluster head. The study outcome proved proposed a system to be better than conventional system in the form of energy efficiency.


There are many integrated perimeter security solutions available, the main objective of this paper is to provide cost effective solution. This paper mainly focuses on design of a Low-cost vibration module with RS485 interface, Controller hub with RS485 interface and Ethernet interface and a Command Centre server. The platform consists of RS485 daisy chained vibration sensor network connected to control server via Controller hub. It is designed to pin point the area of intrusion and cueing the camera to that specified location. It can be integrated with smart devices like PTZ/Thermal/IR cameras or radars. Each daisy chain consists of 250 sensors with each sensor 3 metres apart, each ethernet hub can handle 2 daisy chains. The Controller hub gets vibration sensor information via RS485 and transmits data to Command centre using TCP/IP protocol. The Controller centre identifies the location of the sensor and moves the PTZ camera to the specific location and live streams the data to the user.


Sign in / Sign up

Export Citation Format

Share Document