A 3D printed human skin phantom made of multifunctional nanocomposites for the assessment of RF treatments effect

Author(s):  
Patrizia Lamberti ◽  
Luca Melillo ◽  
Monica la Mura ◽  
Rumiana Kotsilkova ◽  
Vladimir Georgiev ◽  
...  
Author(s):  
Iakovos Xenikakis ◽  
Konstantinos Tsongas ◽  
Emmanouil K. Tzimtzimis ◽  
Orestis Katsamenis ◽  
Efterpi Demiri ◽  
...  

2018 ◽  
Vol 199 ◽  
pp. 593-602 ◽  
Author(s):  
Claudio Intini ◽  
Lisa Elviri ◽  
Jaydee Cabral ◽  
Sonya Mros ◽  
Carlo Bergonzi ◽  
...  

2019 ◽  
Vol 4 (9) ◽  
pp. 1900147 ◽  
Author(s):  
Haihang Wang ◽  
Hongmei Yang ◽  
Sheng Zhang ◽  
Li Zhang ◽  
Jiusheng Li ◽  
...  
Keyword(s):  

2018 ◽  
Vol 152 ◽  
pp. 02003
Author(s):  
Yong Leng Chuan ◽  
Elliot Andrews

Non-surgical rhinoplasty procedures which involves the use of injectable derma fillers are highly risky as patients are susceptible to side effects and complications that may cause unwanted changes in their appearance. This research explores an alternative method of non-surgical rhinoplasty for patients seeking augmentation of the nose with the use of three-dimensional (3D) printing. Most rhinoplasty procedures are conducted with the intention of enhancing the aesthetical features of the nose, a 3D model nose was designed based on the combination of the average and the ideal aesthetic parameters of the Northern European Caucasians and South Asia Chinese nose. The modelling of nose is done using the SolidWorks CAD software. An initial design was sketched in a polygon mesh form and further improved on. Different printing materials and infill densities were compared to determine the suitable printing technique. The final nose model is then printed using the Ultimaker 3D printer using Polylactic acid (PLA) with an infill density of 100% at a thickness of 1.4 mm. An inner layer to the 3D printed nose was developed for comfortable attachment of the nose model to human skin. The inner layer was fabricated using agar gelatine. Experiments were carried out to increase the strength and adhesiveness of the gelatine so that it could adhere to the human skin and the PLA surface. Tensile and adhesive strength tests were carried out to determine the suitable gel composition for the attachment of the nose to the user’s face. The key outcome from the experiments using natural gelatine was capability of gel to act as an inner layer for the temporary attachment of the 3D nose model to the human skin


2019 ◽  
Vol 137 ◽  
pp. 104976 ◽  
Author(s):  
Iakovos Xenikakis ◽  
Manolis Tzimtzimis ◽  
Konstantinos Tsongas ◽  
Dimitrios Andreadis ◽  
Euterpi Demiri ◽  
...  

Author(s):  
Douglas R. Keene ◽  
Robert W. Glanville ◽  
Eva Engvall

A mouse monoclonal antibody (5C6) prepared against human type VI collagen (1) has been used in this study to immunolocalize type VI collagen in human skin. The enbloc method used involves exposing whole tissue pieces to primary antibody and 5 nm gold conjugated secondary antibody before fixation, and has been described in detail elsewhere (2).Biopsies were taken from individuals ranging in age from neonate to 65 years old. By immuno-electron microscopy, type VI collagen is found to be distributed as a fine branching network closely associated with (but not attached to) banded collagen fibrils containing types I and III collagen (Fig. 1). It appears to enwrap fibers, to weave between individual fibrils within a fiber, and to span the distance separating fibers, creating a “web-like network” which entraps fibers within deep papillary and reticular dermal layers (Fig. 2). Relative to that in the dermal matrix, the concentration of type VI collagen is higher around endothelial basement membranes limiting the outer boundaries of nerves, capillaries, and fat cells (Fig. 3).


Author(s):  
A. P. Lupulescu ◽  
H. Pinkus ◽  
D. J. Birmingham

Our laboratory is engaged in the study of the effect of different chemical agents on human skin, using electron microscopy. Previous investigations revealed that topical use of a strong alkali (NaOH 1N) or acid (HCl 1N), induces ultrastructural changes in the upper layers of human epidermis. In the current experiments, acetone and kerosene, which are primarily lipid solvents, were topically used on the volar surface of the forearm of Caucasian and Negro volunteers. Skin specimens were bioptically removed after 90 min. exposure and 72. hours later, fixed in 3% buffered glutaraldehyde, postfixed in 1% phosphate osmium tetroxide, then flat embedded in Epon.


Author(s):  
R. R. Warner

Keratinocytes undergo maturation during their transit through the viable layers of skin, and then abruptly transform into flattened, anuclear corneocytes that constitute the cellular component of the skin barrier, the stratum corneum (SC). The SC is generally considered to be homogeneous in its structure and barrier properties, and is often shown schematically as a featureless brick wall, the “bricks” being the corneocytes, the “mortar” being intercellular lipid. Previously we showed the outer SC was not homogeneous in its composition, but contained steep gradients of the physiological inorganic elements Na, K and Cl, likely originating from sweat salts. Here we show the innermost corneocytes in human skin are also heterogeneous in composition, undergoing systematic changes in intracellular element concentration during transit into the interior of the SC.Human skin biopsies were taken from the lower leg of individuals with both “good” and “dry” skin and plunge-frozen in a stirred, cooled isopentane/propane mixture.


Author(s):  
L.X. Oakford ◽  
S.D. Dimitrijevich ◽  
R. Gracy

In intact skin the epidermal layer is a dynamic tissue component which is maintained by a basal layer of mitotically active cells. The protective upper epidermis, the stratum corneum, is generated by differentiation of the suprabasal keratinocytes which eventually desquamate as anuclear comeocytes. A similar sequence of events is observed in vitro in the non-contracting human skin equivalent (HSE) which was developed in this lab (1). As a part of the definition process for this model of living skin we are examining its ultrastructural features. Since desmosomes are important in maintaining cell-cell interactions in stratified epithelia their distribution in HSE was examined.


Sign in / Sign up

Export Citation Format

Share Document