gel composition
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 29)

H-INDEX

20
(FIVE YEARS 3)

Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3889
Author(s):  
Boris Shaskolskiy ◽  
Ilya Kandinov ◽  
Dmitry Kravtsov ◽  
Alexandra Vinokurova ◽  
Sofya Gorshkova ◽  
...  

A multiplex assay based on a low-density hydrogel microarray was developed to identify genomic substitutions in N. gonorrhoeae that determine resistance to the currently recommended treatment agents ceftriaxone and azithromycin and the previously used drugs penicillin, tetracycline, and ciprofloxacin. The microarray identifies 74 drug resistance determinants in the N. gonorrhoeae penA, ponA, porB, gyrA, parC, rpsJ, mtrR, blaTEM, tetM, and 23S rRNA genes. The hydrogel elements were formed by automated dispensing of nanoliter-volume droplets followed by UV-induced copolymerization of NH2-containing oligonucleotides with gel-forming monomers. Polybutylene terephthalate plates without special modifications were used as microarray substrates. Sequences and concentrations of immobilized oligonucleotides, gel composition, and hybridization conditions were carefully selected, and the median discrimination ratio ranged from 2.8 to 29.4, allowing unambiguous identification of single-nucleotide substitutions. The mutation identification results in a control sample of 180 N. gonorrhoeae isolates were completely consistent with the Sanger sequencing results. In total, 648 clinical N. gonorrhoeae isolates obtained in Russia during the last 5 years were analyzed and genotyped using these microarrays. The results allowed us to draw conclusions about the present situation with antimicrobial susceptibility of N. gonorrhoeae in Russia and demonstrated the possibility of using hydrogel microarrays to control the spread of antibiotic resistance.


2021 ◽  
Author(s):  
Mustansar Raza ◽  
Hossam Elmoneim ◽  
Kris Looten ◽  
Omar Elzanaty ◽  
Ahmed Shakeel ◽  
...  

Abstract A case study and methodology is presented to shed the light on the different processes followed during the placement of a non-damaging isolation barrier in a group of highly naturally-fractured and vugular gas wells. The temporary isolation aims at isolating the wellbore from the troublesome formation and allow the removal of the original completion string and install a new redesigned one. The process helped putting the wells back on production with-out the need to stimulate any of them. This helped client to reduce the overall workover cost by 40% and proved to be successful and efficient to complete the required operation in a time-efficient. The operator had 4 wells with OH sections ranging from 40-80m which were completed in the late 1990's with no production packer. To preserve wellbore integrity the completion string needed to be pulled and replaced by a string with production packer and DH gauges. Visco-Elastic Surfactant (VES) and calcium CaCO3 (carbonate) used ubiquitously in field operations were tested for optimal design to fill highly fractured OH without damaging formation. Caliper logs were not available, and the presence of natural fractures posed a challenge to calculate the actual OH volume. A system was developed to carry the CaCO3 into the wellbore in stages and slickline was employed to measure fill after each stage. Once the OH was filled with CaCO3 and well would support a fluid column coil tubing was used to place an acid-soluble cement plug in the short interval between casing shoe and end of tubing (6-9m). The paper describes the optimization process followed to tune the CaCO3 pads composition, gel composition, mixing and placement technique. The first well in the campaign required more than 10 times the theoretical volume of CaCO3 to fill the open hole with multiple settling issues at surface. It was concluded the surfactant gel was likely carrying the CaCO3 into the fractures. The procedure was modified to tie in a line of breaker solution to the well head allowing sufficient viscosity of the fluid to carry the CaCO3 from surface but immediately lose viscosity and allow the CaCO3 to settle in the open hole without being carried into the formation. Specific coil tubing procedures were employed to allow the setting of ultra-short acid soluble cement plugs (<6m). All wells were successfully isolated to allow the safe workover of the completion string and returned to production with no loss of gas flow, with-out the need to stimulate after the work over. The campaign exhibited a new method of employing existing technologies to achieve the objective in a highly challenging and relatively new oilfield of Kurdistan. The campaign also demonstrated the benefit, in terms of saving time and cost because of extensive pre-execution planning.


2021 ◽  
Author(s):  
Daichi Yamada ◽  
Simon Hori ◽  
Shuhei Abe ◽  
Yuki Kumeno ◽  
Takahiro Yamazaki ◽  
...  

Abstract Catheter surgery is a minimally invasive treatment in which visual information is limited to a two-dimensional image generated by an X-ray camera. This results in the possibility that stress applied by the catheter onto a blood vessel wall damages the vessel. Doctors must therefore be skillful at catheter surgery. We proposed a catheter surgery simulator that visualizes the stress applied to the blood vessel wall using photoelasticity. The manufacture of this simulator requires creating blood vessel mimics that reproduce the physical properties of blood vessel tissue using photoelasticity. This study investigated the mechanical and photoelastic properties of gel materials and selected a gel composition suitable for making blood vessel mimics. We showed that by changing the compositions of polyvinyl alcohol (PVA) hydrogel and double network (DN) gel we could reproduce various blood vessel tissue properties.


2021 ◽  
pp. 109-122
Author(s):  
Nadezhda Mikhailovna Mikova ◽  
Elena Valentinovna Mazurova ◽  
Ivan Petrovich Ivanov ◽  
Boris Nikolayevich Kuznetsov

For the first time, tannin-lignin-formaldehyde and tannin-lignin-furfuryl organic gels were obtained on the basis of larch bark tannins and hydrolysis lignin by sol-gel condensation with formaldehyde and furfuryl alcohol. Their physico-chemical properties were studied by varying the content of lignin (from 5 to 30 wt%) and a fixed mass ratio of polyphenolic substances to the crosslinking reagent (1 : 1.5). With an increase in the lignin content the density of tannin-lignin formaldehyde gels decreases from 0.83 to 0.53 g/ cm3, and that of tannin-lignin-furfuryl gels is from 0.32 to 0.14 g / cm3. According to the FTIR data, the structures of tannin-lignin-formaldehyde and tannin-lignin-furfuryl gels are formed by aromatic fragments cross-linked with methylene and methylene-ether bridges. Scanning electron microscopy shows that the addition of appropriate amounts of lignin to tannins (up to 10 wt% when using formaldehyde and up to 20 wt% when using furfuryl alcohol) promotes the formation of gels with a more developed porous structure. In the case of tannin-lignin-formaldehyde gel, the specific surface area and sorption of methylene blue are 12 m2 / g and 43 mg / g and for tannin-lignin-furfuryl gel – 72 m2 / g and 114.5 mg/g, respectively. It was found that an increase in the lignin content in the gel composition over 20 wt.% is accompanied by the phase localization of lignin (precipitation), which reduces the strength of the resulting gel and reduces its specific surface area.


Author(s):  
Mayorova A.V. ◽  
Sysuev B.B.

The development of an external gel containing purified bischofite will allow the scars treatment in the stage of prevention and formation due to the effect on various links of pathological wound healing. This study’s aim was the development of a gel with bischofite for the scars prevention and treatment. Bischofite brine from the purified Volgograd deposit was selected as the active pharmaceutical substance. Polymer gelling agents: methylcellulose-100, sodium carboxymethyl cellulose, hydroxymethyl cellulose, aerosil, Tizol®. The QTPP requirements for developed bischofite gel are aimed at effective wound healing and prevention of pathological scarring, which corresponds to the ointments used at the III stage of the wound process. Comprehensive technological studies of model samples of gels with bischofite were carried out: determination of external signs and the application to the skin, smearing, thermal stability and pH, study of osmotic activity and release of bischofite (in terms of magnesium ions). The maximum amount (8 points) was observed in the composition using the Tizol® gel-forming agent, the model sample based on it provided the maximum degree of release, minimal osmotic activity, and good smearing. In addition, Tizol® possesses anti-inflammatory activity. The optimal concentration of the aqueous phase is justified by the assessment of the consistency properties, the spreadability and rheological properties. Thus, as a result the composition of the bischofite gel was developed using Tizol® as a base, containing glycerin as a plasticizer and a moisture agent, the preservative sodium benzoate and purified water.


Author(s):  
Opeyemi O Oyesomi ◽  
Ayobami O Oyedele ◽  
Idris A Oyemitan ◽  
Oluwole I Adeyem ◽  
Anthony A Elujoba

2020 ◽  
Vol 9 (4) ◽  
pp. 64-69
Author(s):  
Hao Nguyen Truong Gia ◽  
Huy Tran Huynh Gia ◽  
Phuong Nguyen Thi Truc ◽  
Tu Le Nguyen Quang ◽  
Dung Nguyen Van ◽  
...  

In this study, experimental results on mesoporous zeolite preparation from a common solid waste, the rice husk ash by a top-down and bottom-up approach were reported. In top-down method, the consecutive treatments of zeolite by acid and alkaline in the presence of a cationic surfactant (CTAB) successfully generated mesopores in the zeolite. In bottom-up method, the sufficient added amount of CTAB in the gel composition could form mesopores in the zeolite. The obtained mesoporous zeolite possessed mesopore with a size of around 3-6 nm in both top-down and bottom-up approaches. As a result, the pore volume of the mesoporous zeolite was significantly increased by more than 60% when comparing to the “parent” rice-husk-ash derived zeolite. Significantly, the mesopore surface area of the mesoporous zeolite could be 2.4 times higher than that of the parent zeolite.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5784
Author(s):  
Xu Chen ◽  
Eric Kim ◽  
Prannoy Suraneni ◽  
Leslie Struble

For geopolymers (usually composed of unreacted precursor and gel), the compressive strength is controlled by two factors. The first is the degree of reaction, or, equivalently, the amount of gel formed, including any calcium silicate hydrate gel in calcium-containing mixtures. The second factor is the gel composition, generally given by the Si/Al ratio. These two parameters are interrelated for typical silicate-activated metakaolin geopolymers. By separating out effects of Si/Al ratio and degree of reaction, this study quantitatively correlates the degree of reaction with the compressive strength of metakaolin-based geopolymers with and without calcium. Solid-state 29Si nuclear magnetic resonance (NMR) aided with chemical extractions was used to determine gel amounts and composition for several geopolymer mixtures. The compressive strength was also measured for each mixture at 7 days. Both the increase of Na/Al ratio in mixtures without calcium and addition of external calcium increased the degree of reaction, and compressive strength correlated linearly (R2 > 0.88) with the degree of reaction.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2686
Author(s):  
Iñaki Gomez ◽  
Yolanda Alesanco ◽  
Jose Alberto Blázquez ◽  
Ana Viñuales ◽  
Luis C. Colmenares

The trend of research towards more sustainable materials is pushing the application of biopolymers in a variety of unexplored fields. In this regard, hydrogels are attracting significant attention as electrolytes for flexible electrochemical devices thanks to their combination of ionic conductivity and mechanical properties. In this context, we present the use of cellulose-based hydrogels as aqueous electrolytes for electrochemical devices. These materials were obtained by crosslinking of hydroxyethyl cellulose (HEC) with divinyl sulfone (DVS) in the presence of carboxymethyl cellulose (CMC), creating a semi-IPN structure. The reaction was confirmed by NMR and FTIR. The small-amplitude oscillatory shear (SAOS) technique revealed that the rheological properties could be conveniently varied by simply changing the gel composition. Additionally, the hydrogels presented high ionic conductivity in the range of mS cm−1. The ease of synthesis and processing of the hydrogels allowed the assembly of an all-in-one electrochromic device (ECD) with high transmittance variation, improved switching time and good color efficiency. On the other hand, the swelling ability of the hydrogels permits the tuning of the electrolyte to improve the performance of a printed Zinc/MnO2 primary battery. The results prove the potential of cellulose-based hydrogels as electrolytes for more sustainable electrochemical devices.


Sign in / Sign up

Export Citation Format

Share Document