Performance evaluation of remote navigation with network delay for low-cost mobile robots

Author(s):  
Yuka Kato ◽  
Mamiko Tanaka
Author(s):  
Carl Malings ◽  
Rebecca Tanzer ◽  
Aliaksei Hauryliuk ◽  
Provat K. Saha ◽  
Allen L. Robinson ◽  
...  

Robotica ◽  
2021 ◽  
pp. 1-18
Author(s):  
Majid Yekkehfallah ◽  
Ming Yang ◽  
Zhiao Cai ◽  
Liang Li ◽  
Chuanxiang Wang

SUMMARY Localization based on visual natural landmarks is one of the state-of-the-art localization methods for automated vehicles that is, however, limited in fast motion and low-texture environments, which can lead to failure. This paper proposes an approach to solve these limitations with an extended Kalman filter (EKF) based on a state estimation algorithm that fuses information from a low-cost MEMS Inertial Measurement Unit and a Time-of-Flight camera. We demonstrate our results in an indoor environment. We show that the proposed approach does not require any global reflective landmark for localization and is fast, accurate, and easy to use with mobile robots.


2018 ◽  
Vol 8 (3) ◽  
pp. 416 ◽  
Author(s):  
Andrea Masiero ◽  
Francesca Fissore ◽  
Alberto Guarnieri ◽  
Francesco Pirotti ◽  
Domenico Visintini ◽  
...  

Author(s):  
Gustavo Caiza ◽  
Carlos S. Leon ◽  
Luis A. Campana ◽  
Carlos A. Garcia ◽  
Marcelo V. Garcia

Robotics ◽  
2013 ◽  
pp. 375-390
Author(s):  
F. Nagata ◽  
T. Yamashiro ◽  
N. Kitahara ◽  
A. Otsuka ◽  
K. Watanabe ◽  
...  

Multiple mobile robots with six PSD (Position Sensitive Detector) sensors are designed for experimentally evaluating the performance of two control systems. They are self-control mode and server-supervisory control mode. The control systems are considered to realize swarm behaviors such as Ligia exotica. This is done by using only information of PSD sensors. Experimental results show basic but important behaviors for multiple mobile robots. They are following, avoidance, and schooling behaviors. The collective behaviors such as following, avoidance, and schooling emerge from the local interactions among the robots and/or between the robots and the environment. The objective of the study is to design an actual system for multiple mobile robots, to systematically simulate the behaviors of various creatures who form groups such as a school of fish or a swarm of insect. Further, the applicability of the server-supervisory control scheme to an intelligent DNC (Direct Numerical Control) system is briefly considered for future development. DNC system is an important peripheral apparatus, which can directly control NC machine tools. However, conventional DNC systems can neither deal with various information transmitted from different kinds of sensors through wireless communication nor output suitable G-codes by analyzing the sensors information in real time. The intelligent DNC system proposed at the end of the chapter aims to realize such a novel and flexible function with low cost.


2013 ◽  
Vol 416-417 ◽  
pp. 181-186
Author(s):  
Dao Han Wang ◽  
Xiu He Wang

This paper presents a novel linear switch reluctance machine (LSRM) with segmental stator. The principle of the presented machine is given and compared to the well-known teeth type linear switch reluctance machine. Because the presented machine incorporates a simple concentric winding and concrete ferrite-magnetic segmentations, it features unique magnetic circuit compared to teeth type linear reluctance machine. It is found that the presented linear reluctance machine gains favorable superiority over the teeth type linear reluctance machine in terms of high force density, high reliability and low cost. Different topologies of the presented machine are given and both their merits and demerits are discussed.


2009 ◽  
Vol 62-64 ◽  
pp. 723-727
Author(s):  
C.O. Ilechie ◽  
G.F. Aibangbee ◽  
S.R. Ogblechi ◽  
P.E. Amiolemhen

An alternative source of heat energy to firewood called, palm waste briquette, has been developed from oil palm fruit process wastes. These wastes (sludge, shell, fibre) are compounded in a volumetric ratio of 1:2:3 and moulded into briquettes. The performance evaluation of a low cost women friendly palm waste briquette moulding machine was carried out. The evaluation showed that the machine designed and fabricated using readily available low carbon steel (mild steel) and employing the vertical screw thread mechanism in its operation, produces three different sizes of briquette (industrial sizes, medium sizes and domestic sizes). It requires only two unskilled operators and has a daily throughput of about 1,300kg briquettes (i.e. 400 pieces-industrial size or 800 pieces-medium size or 1,600 pieces-domestic size) unlike a modified brick moulding machine which has a daily throughput of 120 pieces industrial size


2017 ◽  
Vol 36 (12) ◽  
pp. 1363-1386 ◽  
Author(s):  
Patrick McGarey ◽  
Kirk MacTavish ◽  
François Pomerleau ◽  
Timothy D Barfoot

Tethered mobile robots are useful for exploration in steep, rugged, and dangerous terrain. A tether can provide a robot with robust communications, power, and mechanical support, but also constrains motion. In cluttered environments, the tether will wrap around a number of intermediate ‘anchor points’, complicating navigation. We show that by measuring the length of tether deployed and the bearing to the most recent anchor point, we can formulate a tethered simultaneous localization and mapping (TSLAM) problem that allows us to estimate the pose of the robot and the positions of the anchor points, using only low-cost, nonvisual sensors. This information is used by the robot to safely return along an outgoing trajectory while avoiding tether entanglement. We are motivated by TSLAM as a building block to aid conventional, camera, and laser-based approaches to simultaneous localization and mapping (SLAM), which tend to fail in dark and or dusty environments. Unlike conventional range-bearing SLAM, the TSLAM problem must account for the fact that the tether-length measurements are a function of the robot’s pose and all the intermediate anchor-point positions. While this fact has implications on the sparsity that can be exploited in our method, we show that a solution to the TSLAM problem can still be found and formulate two approaches: (i) an online particle filter based on FastSLAM and (ii) an efficient, offline batch solution. We demonstrate that either method outperforms odometry alone, both in simulation and in experiments using our TReX (Tethered Robotic eXplorer) mobile robot operating in flat-indoor and steep-outdoor environments. For the indoor experiment, we compare each method using the same dataset with ground truth, showing that batch TSLAM outperforms particle-filter TSLAM in localization and mapping accuracy, owing to superior anchor-point detection, data association, and outlier rejection.


Sign in / Sign up

Export Citation Format

Share Document