Integrating Remote Sensing and Machine Learning for Regional-Scale Habitat Mapping: Advances and Future Challenges for Desert Locust Monitoring

Author(s):  
Kristen Rhodes ◽  
Vasit Sagan
2021 ◽  
Vol 13 (19) ◽  
pp. 3838
Author(s):  
Yan Liu ◽  
Sha Zhang ◽  
Jiahua Zhang ◽  
Lili Tang ◽  
Yun Bai

Accurate estimates of evapotranspiration (ET) over croplands on a regional scale can provide useful information for agricultural management. The hybrid ET model that combines the physical framework, namely the Penman-Monteith equation and machine learning (ML) algorithms, have proven to be effective in ET estimates. However, few studies compared the performances in estimating ET between multiple hybrid model versions using different ML algorithms. In this study, we constructed six different hybrid ET models based on six classical ML algorithms, namely the K nearest neighbor algorithm, random forest, support vector machine, extreme gradient boosting algorithm, artificial neural network (ANN) and long short-term memory (LSTM), using observed data of 17 eddy covariance flux sites of cropland over the globe. Each hybrid model was assessed to estimate ET with ten different input data combinations. In each hybrid model, the ML algorithm was used to model the stomatal conductance (Gs), and then ET was estimated using the Penman-Monteith equation, along with the ML-based Gs. The results showed that all hybrid models can reasonably reproduce ET of cropland with the models using two or more remote sensing (RS) factors. The results also showed that although including RS factors can remarkably contribute to improving ET estimates, hybrid models except for LSTM using three or more RS factors were only marginally better than those using two RS factors. We also evidenced that the ANN-based model exhibits the optimal performance among all ML-based models in modeling daily ET, as indicated by the lower root-mean-square error (RMSE, 18.67–21.23 W m−2) and higher correlations coefficient (r, 0.90–0.94). ANN are more suitable for modeling Gs as compared to other ML algorithms under investigation, being able to provide methodological support for accurate estimation of cropland ET on a regional scale.


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1425 ◽  
Author(s):  
Adriaan L. van Natijne ◽  
Roderik C. Lindenbergh ◽  
Thom A. Bogaard

Nowcasting and early warning systems for landslide hazards have been implemented mostly at the slope or catchment scale. These systems are often difficult to implement at regional scale or in remote areas. Machine Learning and satellite remote sensing products offer new opportunities for both local and regional monitoring of deep-seated landslide deformation and associated processes. Here, we list the key variables of the landslide process and the associated satellite remote sensing products, as well as the available machine learning algorithms and their current use in the field. Furthermore, we discuss both the challenges for the integration in an early warning system, and the risks and opportunities arising from the limited physical constraints in machine learning. This review shows that data products and algorithms are available, and that the technology is ready to be tested for regional applications.


Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3717 ◽  
Author(s):  
Lai ◽  
Tsai

This study developed a systematic approach with machine learning (ML) to apply the satellite remote sensing images, geographic information system (GIS) datasets, and spatial analysis for multi-temporal and event-based landslide susceptibility assessments at a regional scale. Random forests (RF) algorithm, one of the ML-based methods, was selected to construct the landslide susceptibility models. Different ratios of landslide and non-landslide samples were considered in the experiments. This study also employed a cost-sensitive analysis to adjust the decision boundary of the developed RF models with unbalanced sample ratios to improve the prediction results. Two strategies were investigated for model verification, namely space- and time-robustness. The space-robustness verification was designed for separating samples into training and examining data based on a single event or the same dataset. The time-robustness verification was designed for predicting subsequent landslide events by constructing a landslide susceptibility model based on a specific event or period. A total of 14 GIS-based landslide-related factors were used and derived from the spatial analyses. The developed landslide susceptibility models were tested in a watershed region in northern Taiwan with a landslide inventory of changes detected through multi-temporal satellite images and verified through field investigation. To further examine the developed models, the landslide susceptibility distributions of true occurrence samples and the generated landslide susceptibility maps were compared. The experiments demonstrated that the proposed method can provide more reasonable results, and the accuracies were found to be higher than 93% and 75% in most cases for space- and time-robustness verifications, respectively. In addition, the mapping results revealed that the multi-temporal models did not seem to be affected by the sample ratios included in the analyses.


2020 ◽  
Author(s):  
Adriaan van Natijne ◽  
Roderik Lindenbergh ◽  
Thom Bogaard

<p>Where landslide hazard mitigation is impossible, Early Warning Systems are a valuable alternative to reduce landslide risk. To this extent nowcasting and Early Warning Systems for landslide hazard have been implemented mostly at local scale. Unfortunately, such systems are often difficult to implement at regional scale or in remote areas due to dependency on local sensors. However, in recent years various studies have demonstrated the effective application of Machine Learning for deformation forecasting of slow-moving, deep-seated landslides. Machine Learning, combined with satellite Remote Sensing products offers new opportunities for both local and regional monitoring of deep-seated landslides and associated processes.</p><p>Working from the key variables of the landslide process we selected the available satellite Remote Sensing products, the necessary assumptions for a satellite only application and evaluated the potential benefit of local information. In the absence of continuous, satellite deformation measurements, nowcasting of the system state will provide a short term deformation prediction. We demonstrate the opportunities of Machine Learning on multi-sensor monitored Austrian landslide and anticipate on the integration in an Early Warning System. Furthermore, we highlight the risks and opportunities arising from the limited physics constraints in Machine Learning.</p>


Author(s):  
Sumit Kaur

Abstract- Deep learning is an emerging research area in machine learning and pattern recognition field which has been presented with the goal of drawing Machine Learning nearer to one of its unique objectives, Artificial Intelligence. It tries to mimic the human brain, which is capable of processing and learning from the complex input data and solving different kinds of complicated tasks well. Deep learning (DL) basically based on a set of supervised and unsupervised algorithms that attempt to model higher level abstractions in data and make it self-learning for hierarchical representation for classification. In the recent years, it has attracted much attention due to its state-of-the-art performance in diverse areas like object perception, speech recognition, computer vision, collaborative filtering and natural language processing. This paper will present a survey on different deep learning techniques for remote sensing image classification. 


2019 ◽  
Vol 11 (3) ◽  
pp. 284 ◽  
Author(s):  
Linglin Zeng ◽  
Shun Hu ◽  
Daxiang Xiang ◽  
Xiang Zhang ◽  
Deren Li ◽  
...  

Soil moisture mapping at a regional scale is commonplace since these data are required in many applications, such as hydrological and agricultural analyses. The use of remotely sensed data for the estimation of deep soil moisture at a regional scale has received far less emphasis. The objective of this study was to map the 500-m, 8-day average and daily soil moisture at different soil depths in Oklahoma from remotely sensed and ground-measured data using the random forest (RF) method, which is one of the machine-learning approaches. In order to investigate the estimation accuracy of the RF method at both a spatial and a temporal scale, two independent soil moisture estimation experiments were conducted using data from 2010 to 2014: a year-to-year experiment (with a root mean square error (RMSE) ranging from 0.038 to 0.050 m3/m3) and a station-to-station experiment (with an RMSE ranging from 0.044 to 0.057 m3/m3). Then, the data requirements, importance factors, and spatial and temporal variations in estimation accuracy were discussed based on the results using the training data selected by iterated random sampling. The highly accurate estimations of both the surface and the deep soil moisture for the study area reveal the potential of RF methods when mapping soil moisture at a regional scale, especially when considering the high heterogeneity of land-cover types and topography in the study area.


2021 ◽  
Vol 13 (4) ◽  
pp. 641
Author(s):  
Gopal Ramdas Mahajan ◽  
Bappa Das ◽  
Dayesh Murgaokar ◽  
Ittai Herrmann ◽  
Katja Berger ◽  
...  

Conventional methods of plant nutrient estimation for nutrient management need a huge number of leaf or tissue samples and extensive chemical analysis, which is time-consuming and expensive. Remote sensing is a viable tool to estimate the plant’s nutritional status to determine the appropriate amounts of fertilizer inputs. The aim of the study was to use remote sensing to characterize the foliar nutrient status of mango through the development of spectral indices, multivariate analysis, chemometrics, and machine learning modeling of the spectral data. A spectral database within the 350–1050 nm wavelength range of the leaf samples and leaf nutrients were analyzed for the development of spectral indices and multivariate model development. The normalized difference and ratio spectral indices and multivariate models–partial least square regression (PLSR), principal component regression, and support vector regression (SVR) were ineffective in predicting any of the leaf nutrients. An approach of using PLSR-combined machine learning models was found to be the best to predict most of the nutrients. Based on the independent validation performance and summed ranks, the best performing models were cubist (R2 ≥ 0.91, the ratio of performance to deviation (RPD) ≥ 3.3, and the ratio of performance to interquartile distance (RPIQ) ≥ 3.71) for nitrogen, phosphorus, potassium, and zinc, SVR (R2 ≥ 0.88, RPD ≥ 2.73, RPIQ ≥ 3.31) for calcium, iron, copper, boron, and elastic net (R2 ≥ 0.95, RPD ≥ 4.47, RPIQ ≥ 6.11) for magnesium and sulfur. The results of the study revealed the potential of using hyperspectral remote sensing data for non-destructive estimation of mango leaf macro- and micro-nutrients. The developed approach is suggested to be employed within operational retrieval workflows for precision management of mango orchard nutrients.


2021 ◽  
Vol 13 (8) ◽  
pp. 1433
Author(s):  
Shobitha Shetty ◽  
Prasun Kumar Gupta ◽  
Mariana Belgiu ◽  
S. K. Srivastav

Machine learning classifiers are being increasingly used nowadays for Land Use and Land Cover (LULC) mapping from remote sensing images. However, arriving at the right choice of classifier requires understanding the main factors influencing their performance. The present study investigated firstly the effect of training sampling design on the classification results obtained by Random Forest (RF) classifier and, secondly, it compared its performance with other machine learning classifiers for LULC mapping using multi-temporal satellite remote sensing data and the Google Earth Engine (GEE) platform. We evaluated the impact of three sampling methods, namely Stratified Equal Random Sampling (SRS(Eq)), Stratified Proportional Random Sampling (SRS(Prop)), and Stratified Systematic Sampling (SSS) upon the classification results obtained by the RF trained LULC model. Our results showed that the SRS(Prop) method favors major classes while achieving good overall accuracy. The SRS(Eq) method provides good class-level accuracies, even for minority classes, whereas the SSS method performs well for areas with large intra-class variability. Toward evaluating the performance of machine learning classifiers, RF outperformed Classification and Regression Trees (CART), Support Vector Machine (SVM), and Relevance Vector Machine (RVM) with a >95% confidence level. The performance of CART and SVM classifiers were found to be similar. RVM achieved good classification results with a limited number of training samples.


2021 ◽  
Vol 15 (1) ◽  
pp. 54-69
Author(s):  
Yanqin Tian ◽  
Chenghai Yang ◽  
Wenjiang Huang ◽  
Jia Tang ◽  
Xingrong Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document