Theoretical analysis of room temperature InAs/sub 0.89/Sb/sub 0.11/ mid-infrared (MIR) photodetector for CO detection

Author(s):  
P. Chakrabarti ◽  
R.K. Lal ◽  
M. Jain ◽  
S. Gupta
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Saurabh Dixit ◽  
Nihar Ranjan Sahoo ◽  
Abhishek Mall ◽  
Anshuman Kumar

AbstractMid-infrared (IR) spectral region is of immense importance for astronomy, medical diagnosis, security and imaging due to the existence of the vibrational modes of many important molecules in this spectral range. Therefore, there is a particular interest in miniaturization and integration of IR optical components. To this end, 2D van der Waals (vdW) crystals have shown great potential owing to their ease of integration with other optoelectronic platforms and room temperature operation. Recently, 2D vdW crystals of $$\alpha$$ α -$$\hbox {MoO}_{3}$$ MoO 3 and $$\alpha$$ α -$$\hbox {V}_2 \hbox {O}_5$$ V 2 O 5 have been shown to possess the unique phenomenon of natural in-plane biaxial hyperbolicity in the mid-infrared frequency regime at room temperature. Here, we report a unique application of this in-plane hyperbolicity for designing highly efficient, lithography free and extremely subwavelength mid-IR photonic devices for polarization engineering. In particular, we show the possibility of a significant reduction in the device footprint while maintaining an enormous extinction ratio from $$\alpha$$ α -$$\hbox {MoO}_{3}$$ MoO 3 and $$\alpha$$ α -$$\hbox {V}_2$$ V 2 $$\hbox {O}_5$$ O 5 based mid-IR polarizers. Furthermore, we investigate the application of sub-wavelength thin films of these vdW crystals towards engineering the polarization state of incident mid-IR light via precise control of polarization rotation, ellipticity and relative phase. We explain our results using natural in-plane hyperbolic anisotropy of $$\alpha$$ α -$$\hbox {MoO}_{3}$$ MoO 3 and $$\alpha$$ α -$$\hbox {V}_2$$ V 2 $$\hbox {O}_5$$ O 5 via both analytical and full-wave electromagnetic simulations. This work provides a lithography free alternative for miniaturized mid-infrared photonic devices using the hyperbolic anisotropy of $$\alpha$$ α -$$\hbox {MoO}_{3}$$ MoO 3 and $$\alpha$$ α -$$\hbox {V}_2$$ V 2 $$\hbox {O}_5$$ O 5 .


1996 ◽  
Vol 32 (6) ◽  
pp. 560 ◽  
Author(s):  
J. Faist ◽  
F. Capasso ◽  
C. Sirtori ◽  
D.L. Sivco ◽  
A.L. Hutchinson ◽  
...  

1994 ◽  
Vol 14 (1-3) ◽  
pp. 155-160 ◽  
Author(s):  
Tatsuhisa Kato

Absorption spectra are detected for C60− and C602− produced electrolytically in solution at room temperature. Theoretical analysis of the spectrum of C60− by CNDO/S calculations gives an interpretation of the characteristic near-IR bands, the weak visible bands, and the strong bands in the UV region. The emission spectrum of C60− is a mirror image of the near-IR absorption band, and the detection of the emission reconfirms our original assignment of the absorption spectrum. The nature of the spectrum of C602− is characterized by a similar orbital picture to that of C60−. Further laser experiments of significance are proposed.


2013 ◽  
Vol 103 (18) ◽  
pp. 183513 ◽  
Author(s):  
Parthiban Santhanam ◽  
Duanni Huang ◽  
Rajeev J. Ram ◽  
Maxim A. Remennyi ◽  
Boris A. Matveev

Optica ◽  
2016 ◽  
Vol 3 (9) ◽  
pp. 979 ◽  
Author(s):  
Xuechao Yu ◽  
Zhaogang Dong ◽  
Joel K W Yang ◽  
Qi Jie Wang

Nanoscale ◽  
2021 ◽  
Author(s):  
Vinh Ho ◽  
Yifei Wang ◽  
Michael Cooney ◽  
Nguyen Q Vinh

Ultrafast, high sensitive, low cost photodetectors operating at room temperature sensitive from the deep-ultraviolet to mid-infrared region remain a significant challenge in optoelectronics. Achievements in traditional semiconductors using cryogenic operation...


Sign in / Sign up

Export Citation Format

Share Document