Synchronization Error in QAM-Based FBMC System

Author(s):  
Wonsuk Chung ◽  
Beomju Kim ◽  
Moonchang Choi ◽  
Hyungju Nam ◽  
Hyunkyu Yu ◽  
...  
2021 ◽  
pp. 108-114
Author(s):  
D.D. Privalov

The sampling rate at a given bit rate is a requirement for the speed of digital signal processors. In this regard, it is necessary to strive to reduce it in the development of electronic devices, especially portable ones. However, this can lead to an increase in the bit error rate during signal detection. Therefore, it is important to determine the degradation of signal detection with decreasing sampling frequency and to develop practical recommendations to ensure the specified quality of communication. The aim of the article is to study the influence of sampling frequency and interpolation on the bit error rate of GMSK Signal. The article considers the incoherent detection of a GMSK signal in a channel with additive white Gaussian noise, taking into account the influence of the clock synchronization error. Numerical results are presented that characterize an increase in the bit error rate with a decrease in the signal sampling frequency. It is shown that when using the cubic Farrow interpolator, there is no significant degradation in the bit error probability. The minimum number of samples per symbol is determined, at which the bit error rate is close to the theoretical values in the absence of synchronization error. The presented results can be used in development of wireless data transmission systems.


2017 ◽  
Vol 9 ◽  
pp. 03007
Author(s):  
Nikolaos Bardis ◽  
Nikolaos Doukas ◽  
Oleksandr P. Markovskyi

2018 ◽  
Vol 10 (12) ◽  
pp. 168781401881349
Author(s):  
Lijing Dong

Synchronization of a large-scale lifting system with hydraulic actuator failures is investigated in this article. The lifting system is composed of multiple intelligent lifting subsystems with hydraulic actuators, wireless data transfer unit, and distributed controller. During the lifting process, the hydraulic actuators are possible to be malfunctioned. Once actuator failure occurs, the number of lifting points and the communication topology would change over different time intervals. This article proposes a distributed synchronization control method and adopts switching technique in analyzing the lifting synchronization. The distributed controller is designed with information received from around subsystems through wireless data transfer unit rather than with direct reference signal from the control station. On the basis of Lyapunov stability theory and switched technique, sufficient conditions that guarantee the synchronization of the lifting system with actuator failures are achieved, and synchronization errors can be reduced as small as desired. Finally, the effectiveness of proposed distributed synchronization controller is verified by numerical simulations conducted on AMESim platform. From the simulation results, it can be seen that when actuator failures occur, the synchronization error of the remaining lifting subsystems is less than 5%. The lifting synchronization error shrinks to 5% in 5.87 s when a broke-down subsystem returns to normal.


i-Perception ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 204166952110538
Author(s):  
Yuka Saito ◽  
Tomoki Maezawa ◽  
Jun I. Kawahara

A previous study reported the unique finding that people tapping a beat pattern with the right hand produce larger negative synchronization error than when tapping with the left hand or other effectors, in contrast to previous studies that have shown that the hands tap patterns simultaneously without any synchronization errors. We examined whether the inter-hand difference in synchronization error occurred due to handedness or to a specificity of the beat pattern employed in that study. Two experiments manipulated the hand–beat assignments. A comparison between the identical beat to the pacing signal and a beat with a longer interval excluded the handedness hypothesis and demonstrated that beat patterns with relatively shorter intervals were tapped earlier (Experiment 1). These synchronization errors were not local but occurred consistently throughout the beat patterns. Experiment 2 excluded alternative explanations. These results indicate that the apparent inconsistency in previous studies was due to the specificity of the beat patterns, suggesting that a beat pattern with a relatively shorter interval between hands is tapped earlier than beats with longer intervals. Our finding that the bimanual tapping of different beat patterns produced different synchronization errors suggests that the notion of a central timing system may need to be revised.


Sign in / Sign up

Export Citation Format

Share Document