scholarly journals Modeling Intelligent Decision-Making Command and Control Agents: An Application to Air Defense

2014 ◽  
Vol 29 (5) ◽  
pp. 22-29 ◽  
Author(s):  
Sumanta Kumar Das
2021 ◽  
Vol 2131 (2) ◽  
pp. 022103
Author(s):  
Z Nagoev ◽  
I Pshenokova ◽  
O Nagoeva ◽  
S Kankulov

Abstract An approach to the development of intelligent decision-making and control systems based on the hypothesis of the organization of neural activity of the brain in the process of performing cognitive functions is proposed. This approach, based on intelligent software agents with a developed cognitive architecture, is able to provide the process of extracting knowledge from an unstructured data flow, generalizing the knowledge and learning gained, to implement effective methods of synthesizing behavior aimed at solving various problems. A multi-agent model of situational analysis based on self-organization of distributed recursive neurocognitive architectures is presented. In particular, the basic principles of situational analysis based on multi-agent neurocognitive architectures are formulated and an algorithm for the preventive synthesis of the behavior of an intelligent agent aimed at avoiding negative situations for itself is developed. The performed computational experiment showed that on the basis of training the neurocognitive architecture by forming new agents-neurons and connections between them, a complex logical function of behavior control (in particular, situational analysis) develops (forms). The results of this study can be used to create intelligent decision-making and control systems for autonomous robots and robotic systems for various purposes.


2019 ◽  
Vol 7 (7) ◽  
pp. 1118-1119
Author(s):  
Jeff S Shamma

Summary Game theory is the study of interacting decision makers, whereas control systems involve the design of intelligent decision-making devices. When many control systems are interconnected, the result can be viewed through the lens of game theory. This article discusses both long standing connections between these fields as well as new connections stemming from emerging applications.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 794
Author(s):  
Tianjun Sun ◽  
Zhenhai Gao ◽  
Fei Gao ◽  
Tianyao Zhang ◽  
Siyan Chen ◽  
...  

Brain-like intelligent decision-making is a prevailing trend in today’s world. However, inspired by bionics and computer science, the linear neural network has become one of the main means to realize human-like decision-making and control. This paper proposes a method for classifying drivers’ driving behaviors based on the fuzzy algorithm and establish a brain-inspired decision-making linear neural network. Firstly, different driver experimental data samples were obtained through the driving simulator. Then, an objective fuzzy classification algorithm was designed to distinguish different driving behaviors in terms of experimental data. In addition, a brain-inspired linear neural network was established to realize human-like decision-making and control. Finally, the accuracy of the proposed method was verified by training and testing. This study extracts the driving characteristics of drivers through driving simulator tests, which provides a driving behavior reference for the human-like decision-making of an intelligent vehicle.


1992 ◽  
Vol 25 (3) ◽  
pp. 13-21
Author(s):  
R. L. Williamson

The American approach to environmental regulation is characterized by fragmentation of responsibilities, primary reliance on command and control regulations, extraordinary complexity, a preference for identifiable standards, and heavy resort to litigation. This system has provided important benefits, including significant reduction of environmental contamination, substantial use of science in decision-making, broad participatory rights, and the stimulation of new treatment technologies. However, these gains have been achieved at excessive cost. Too much reliance is placed on command and control methods and especially on technology-based standards. There is too much resort to litigation, and inadequate input from science. Participatory rights are being undermined, and there is a poor allocation of decision-making among the federal agencies and the states. Over-regulation sometimes leads to under-regulation, and insufficient attention is given to the impact on small entities. The responsibility for these difficulties rests with everyone, including the federal agencies, the Congress, the general public and the courts. Changes in the regulatory system are needed. We should abandon the use of technology-based standards to control toxic substances under the Clean Water Act in favor of strong health- and environmentally based standards, coupled with taxes on toxic substances in wastewater.


Author(s):  
H. Golan ◽  
A. Parush ◽  
E. Jaffe

Using a simulated Emergency Medical Services (EMS) dispatch center during multi-casualty incident management, this study explored whether the presence of a separate situation display in a Command and Control (C2) setting might require attention at the expense of attending an individual task display, and how it influenced performance and situational awareness. Overall, participants always attended the task display more than the situation display. However, the situation display drew attention at the expense of attending less the task display. The presence of the situation display was related to improved performance and better situational awareness (SA), particularly in the projection level of the SA, which could account also for the better decision-making performance. Participants may have developed an attention allocation strategy to effectively utilize the information of the situation display and execute their tasks on the task display.


Sign in / Sign up

Export Citation Format

Share Document