Movement-Based Solutions to Energy Limitation in Wireless Sensor Networks: State of the Art and Future Trends

IEEE Network ◽  
2020 ◽  
pp. 1-6
Author(s):  
Xuxun Liu ◽  
Mohammad S. Obaidat ◽  
Chi Lin ◽  
Tian Wang ◽  
Anfeng Liu
Author(s):  
Isabelle Augé-Blum ◽  
Fei Yang ◽  
Thomas Watteyne

This chapter presents the state-of-the-art of real-time communication in the challenging topic of Wireless Sensor Networks (WSNs). In real-time communication, the duration between the event which initiates the sending of a message, and the instant this message is received must be smaller than a known delay. Because topologies are extremely dynamic and not known priori, this type of constraint is very hard to meet in WSNs. In this chapter, the different communication protocols proposed in the literatures, together with their respective advantages and drawbacks, are discussed. We focus on MAC and routing because they are key layers in real-time communication. As most existing protocols are not suitable under realistic constraints where sensor nodes and wireless links are unreliable, we give, at the end of this chapter, some insights about future trends in designing real-time protocols. We hope to give the reader an overview of recent research works in this complex topic which we consider to be essential in critical applications.


2012 ◽  
pp. 120-129
Author(s):  
Isabelle Augé-Blum ◽  
Fei Yang ◽  
Thomas Watteyne

This chapter presents the state-of-the-art of real-time communication in the challenging topic of Wireless Sensor Networks (WSNs). In real-time communication, the duration between the event which initiates the sending of a message, and the instant this message is received must be smaller than a known delay. Because topologies are extremely dynamic and not known priori, this type of constraint is very hard to meet in WSNs. In this chapter, the different communication protocols proposed in the literatures, together with their respective advantages and drawbacks, are discussed. We focus on MAC and routing because they are key layers in real-time communication. As most existing protocols are not suitable under realistic constraints where sensor nodes and wireless links are unreliable, we give, at the end of this chapter, some insights about future trends in designing real-time protocols. We hope to give the reader an overview of recent research works in this complex topic which we consider to be essential in critical applications.


2022 ◽  
Vol 18 (1) ◽  
pp. 1-41
Author(s):  
Pamela Bezerra ◽  
Po-Yu Chen ◽  
Julie A. McCann ◽  
Weiren Yu

As sensor-based networks become more prevalent, scaling to unmanageable numbers or deployed in difficult to reach areas, real-time failure localisation is becoming essential for continued operation. Network tomography, a system and application-independent approach, has been successful in localising complex failures (i.e., observable by end-to-end global analysis) in traditional networks. Applying network tomography to wireless sensor networks (WSNs), however, is challenging. First, WSN topology changes due to environmental interactions (e.g., interference). Additionally, the selection of devices for running network monitoring processes (monitors) is an NP-hard problem. Monitors observe end-to-end in-network properties to identify failures, with their placement impacting the number of identifiable failures. Since monitoring consumes more in-node resources, it is essential to minimise their number while maintaining network tomography’s effectiveness. Unfortunately, state-of-the-art solutions solve this optimisation problem using time-consuming greedy heuristics. In this article, we propose two solutions for efficiently applying Network Tomography in WSNs: a graph compression scheme, enabling faster monitor placement by reducing the number of edges in the network, and an adaptive monitor placement algorithm for recovering the monitor placement given topology changes. The experiments show that our solution is at least 1,000× faster than the state-of-the-art approaches and efficiently copes with topology variations in large-scale WSNs.


2021 ◽  
Vol 14 (1) ◽  
pp. 400-409
Author(s):  
Mohamed Borham ◽  
◽  
Ghada Khoriba ◽  
Mostafa-Sami Mostafa ◽  
◽  
...  

Due to the energy limitation in Wireless Sensor Networks (WSNs), most researches related to data collection in WSNs focus on how to collect the maximum amount of data from the network with minimizing the energy consumption as much as possible. Many types of research that are related to data collection are proposed to overcome this issue by using mobility with path constrained as Maximum Amount Shortest Path routing Protocol (MASP) and zone-based algorithms. Recently, Zone-based Energy-Aware Data Collection Protocol (ZEAL) and Enhanced ZEAL have been presented to reduce energy consumption and provide an acceptable data delivery rate. However, the time spent on data collection operations should be taken into account, especially concerning real-time systems, as time is the most critical factor for these systems' performance. In this paper, a routing protocol is proposed to improve the time needed for the data collection process considering less energy consumption. The presented protocol uses a novel path with a communication time-slot assignment algorithm to reduce the count of cycles that are needed for the data collection process with reduction of 50% of the number of cycles needed for other protocols. Therefore, the time and energy needed for data collection are reduced by approximately 25%and 6% respectively, which prolongs the network lifetime. The proposed protocol is called Energy-Time Aware Data Collection Protocol (ETCL).


2020 ◽  
pp. 1580-1600
Author(s):  
Subhendu Kumar Pani

A wireless sensor network may contain hundreds or even tens of thousands of inexpensive sensor devices that can communicate with their neighbors within a limited radio range. By relaying information on each other, they transmit signals to a command post anywhere within the network. Worldwide market for wireless sensor networks is rapidly growing due to a huge variety of applications it offers. In this chapter, we discuss application of computational intelligence techniques in wireless sensor networks on the coverage problem in general and area coverage in particular. After providing different types of coverage encountered in WSN, we present a possible classification of coverage algorithms. Then we dwell on area coverage which is widely studied due to its importance. We provide a survey of literature on area coverage and give an account of its state-of-the art and research directions.


Author(s):  
Riaz Ahmed Shaikh ◽  
Brian J. dAuriol ◽  
Heejo Lee ◽  
Sungyoung Lee

Until recently, researchers have focused on the cryptographic-based security issues more intensively than the privacy and trust issues. However, without the incorporation of trust and privacy features, cryptographic-based security mechanisms are not capable of singlehandedly providing robustness, reliability and completeness in a security solution. In this chapter, we present generic and flexible taxonomies of privacy and trust. We also give detailed critical analyses of the state-of-the-art research, in the field of privacy and trust that is currently not available in the literature. This chapter also highlights the challenging issues and problems.


Author(s):  
Subhendu Kumar Pani

A wireless sensor network may contain hundreds or even tens of thousands of inexpensive sensor devices that can communicate with their neighbors within a limited radio range. By relaying information on each other, they transmit signals to a command post anywhere within the network. Worldwide market for wireless sensor networks is rapidly growing due to a huge variety of applications it offers. In this chapter, we discuss application of computational intelligence techniques in wireless sensor networks on the coverage problem in general and area coverage in particular. After providing different types of coverage encountered in WSN, we present a possible classification of coverage algorithms. Then we dwell on area coverage which is widely studied due to its importance. We provide a survey of literature on area coverage and give an account of its state-of-the art and research directions.


Author(s):  
Nandoori Srikanth ◽  
Muktyala Sivaganga Prasad

<p>Wireless Sensor Networks (WSNs) can extant the individual profits and suppleness with regard to low-power and economical quick deployment for numerous applications. WSNs are widely utilized in medical health care, environmental monitoring, emergencies and remote control areas. Introducing of mobile nodes in clusters is a traditional approach, to assemble the data from sensor nodes and forward to the Base station. Energy efficiency and lifetime improvements are key research areas from past few decades. In this research, to solve the energy limitation to upsurge the network lifetime, Energy efficient trust node based routing protocol is proposed. An experimental validation of framework is focused on Packet Delivery Ratio, network lifetime, throughput, energy consumption and network loss among all other challenges. This protocol assigns some high energy nodes as trusted nodes, and it decides the mobility of data collector.  The energy of mobile nodes, and sensor nodes can save up to a great extent by collecting data from trusted nodes based on their trustworthiness and energy efficiency.  The simulation outcome of our evaluation shows an improvement in all these parameters than existing clustering and Routing algorithms.<strong></strong></p>


Sign in / Sign up

Export Citation Format

Share Document