scholarly journals Cooperative Multi-Agent Path Finding: Beyond Path Planning and Collision Avoidance

Author(s):  
Nir Greshler ◽  
Ofir Gordon ◽  
Oren Salzman ◽  
Nahum Shimkin
2018 ◽  
Vol 06 (04) ◽  
pp. 231-250 ◽  
Author(s):  
Willson Amalraj Arokiasami ◽  
Prahlad Vadakkepat ◽  
Kay Chen Tan ◽  
Dipti Srinivasan

Autonomous unmanned vehicles are preferable in patrolling, surveillance and, search and rescue missions. Multi-agent architectures are commonly used for autonomous control of unmanned vehicles. Existing multi-robot architectures for unmanned aerial and ground robots are generally mission and platform oriented. Collision avoidance, path-planning and tracking are some of the fundamental requirements for autonomous operation of unmanned robots. Though aerial and ground vehicles operate differently, the algorithms for obstacle avoidance, path-planning and path-tracking can be generalized. Service Oriented Interoperable Framework for Robot Autonomy (SOIFRA) proposed in this work is an interoperable multi-agent framework focused on generalizing platform independent algorithms for unmanned aerial and ground vehicles. SOIFRA is behavior-based, modular and interoperable across unmanned aerial and ground vehicles. SOIFRA provides collision avoidance, and, path-planning and tracking behaviors for unmanned aerial and ground vehicles. Vector Directed Path-Generation and Tracking (VDPGT), a vector-based algorithm for real-time path-generation and tracking, is proposed in this work. VDPGT dynamically adopts the shortest path to the destination while minimizing the tracking error. Collision avoidance is performed utilizing Hough transform, Canny contour, Lucas–Kanade sparse optical flow algorithm and expansion of object-based time-to-contact estimation. Simulation and experimental results from Turtlebot and AR Drone show that VDPGT can dynamically generate and track paths, and SOIFRA is interoperable across multiple robotic platforms.


2021 ◽  
Vol 9 (4) ◽  
pp. 405
Author(s):  
Raphael Zaccone

While collisions and groundings still represent the most important source of accidents involving ships, autonomous vessels are a central topic in current research. When dealing with autonomous ships, collision avoidance and compliance with COLREG regulations are major vital points. However, most state-of-the-art literature focuses on offline path optimisation while neglecting many crucial aspects of dealing with real-time applications on vessels. In the framework of the proposed motion-planning, navigation and control architecture, this paper mainly focused on optimal path planning for marine vessels in the perspective of real-time applications. An RRT*-based optimal path-planning algorithm was proposed, and collision avoidance, compliance with COLREG regulations, path feasibility and optimality were discussed in detail. The proposed approach was then implemented and integrated with a guidance and control system. Tests on a high-fidelity simulation platform were carried out to assess the potential benefits brought to autonomous navigation. The tests featured real-time simulation, restricted and open-water navigation and dynamic scenarios with both moving and fixed obstacles.


Sign in / Sign up

Export Citation Format

Share Document