High-speed 600-GHz-Band Terahertz Imaging System Using Polygon Mirror

Author(s):  
Yaheng Wang ◽  
Ryohei Kaname ◽  
Li Yi ◽  
Tadao Nagatsuma
2020 ◽  
Vol 38 (16) ◽  
pp. 4237-4243 ◽  
Author(s):  
Eui Su Lee ◽  
Mugeon Kim ◽  
Kiwon Moon ◽  
Il-Min Lee ◽  
Dong Woo Park ◽  
...  

Author(s):  
David Zimdars ◽  
Greg Fichter ◽  
Chris Megdanoff ◽  
John Duquette ◽  
Margaret Murdock ◽  
...  

Author(s):  
Chung Hsing Li ◽  
Tzu-Chao Yan ◽  
Yuhsin Chang ◽  
Chyong Chen ◽  
Chien-Nan Kuo

2014 ◽  
Vol 104 (2) ◽  
pp. 022601 ◽  
Author(s):  
T. Kashiwagi ◽  
K. Nakade ◽  
B. Marković ◽  
Y. Saiwai ◽  
H. Minami ◽  
...  

2014 ◽  
Vol 129 (S1) ◽  
pp. S45-S50 ◽  
Author(s):  
J H Kim ◽  
J Rimmer ◽  
N Mrad ◽  
S Ahmadzada ◽  
R J Harvey

AbstractObjective:This study investigated the effect of Betadine on ciliated human respiratory epithelial cells.Methods:Epithelial cells from human sinonasal mucosa were cultured at the air–liquid interface. The cultures were tested with Hanks' balanced salt solution containing 10 mM HEPES (control), 100 µM ATP (positive control), 5 per cent Betadine or 10 per cent Betadine (clinical dose). Ciliary beat frequency was analysed using a high-speed camera on a computer imaging system.Results:Undiluted 10 per cent Betadine (n = 6) decreased the proportion of actively beating cilia over 1 minute (p < 0.01). Ciliary beat frequency decreased from 11.15 ± 4.64 Hz to no detectable activity. The result was similar with 5 per cent Betadine (n = 7), with no significant difference compared with the 10 per cent solution findings.Conclusion:Betadine, at either 5 and 10 per cent, was ciliotoxic. Caution should be applied to the use of topical Betadine solution on the respiratory mucosal surface.


2012 ◽  
Vol 7 (S1) ◽  
pp. S126-S131 ◽  
Author(s):  
Hongbing Zhang ◽  
Kazutaka Mitobe ◽  
Mahmudul Kabir ◽  
Masafumi Suzuki ◽  
Yoko Mitobe ◽  
...  

2018 ◽  
Vol 183 ◽  
pp. 02043 ◽  
Author(s):  
Bratislav Lukić ◽  
Dominique Saletti ◽  
Pascal Forquin

This paper presents the measurement results of the dynamic tensile strength of a High Performance Concrete (HPC) obtained using full-field identification method. An ultra-high speed imaging system and the virtual fields method were used to obtain this information. Furthermore the measurement results were compared with the local point-wise measurement to validate the data pressing. The obtained spall strength was found to be consistently 20% lower than the one obtained when the Novikov formula is used.


Sign in / Sign up

Export Citation Format

Share Document