Brain tumor segmentation approaches: Review, analysis and anticipated solutions in machine learning

Author(s):  
Ankit Vidyarthi ◽  
Namita Mittal
Author(s):  
Padmapriya Thiyagarajan ◽  
Sriramakrishnan Padmanaban ◽  
Kalaiselvi Thiruvenkadam ◽  
Somasundaram Karuppanagounder

Background: Among the brain-related diseases, brain tumor segmentation on magnetic resonance imaging (MRI) scans is one of the highly focused research domains in the medical community. Brain tumor segmentation is a very challenging task due to its asymmetric form and uncertain boundaries. This process segregates the tumor region into the active tumor, necrosis and edema from normal brain tissues such as white matter (WM), grey matter (GM), and cerebrospinal fluid (CSF). Introduction: The proposed paper analyzed the advancement of brain tumor segmentation from conventional image processing techniques, to deep learning through machine learning on MRI of human head scans. Method: State-of-the-art methods of these three techniques are investigated, and the merits and demerits are discussed. Results: The prime motivation of the paper is to instigate the young researchers towards the development of efficient brain tumor segmentation techniques using conventional and recent technologies. Conclusion: The proposed analysis concluded that the conventional and machine learning methods were mostly applied for brain tumor detection, whereas deep learning methods were good at tumor substructures segmentation.


2019 ◽  
Vol 1 (Supplement_2) ◽  
pp. ii27-ii27
Author(s):  
Manabu Kinoshita ◽  
Tomohiko Ozaki ◽  
Hideyuki Arita ◽  
Naoki Kagawa ◽  
Yonehiro Kanemura ◽  
...  

Abstract Treatment planning and lesion-follow up are generally conducted by contrast-enhanced MRI in glioma patient care. On the other hand, there are, however, substantial concerns whether MRI actually reflects the extension or activity of this neoplasm, which information should be fundamentally important at every step when treating this disease. As a matter of fact, the authors of this investigation have already shown that there is no difference in tumor cell density within areas with and without contrast enhancement (J Neurosurg. 2016,125(5):1136–1142.) and furthermore that the geometry of MRI based-radiation treatment planning is significantly altered when methionine PET is integrated for this purpose (J Neurosurg. 2018 published on-line). Regardless of these concerns, there is great interest in the research community to construct a machine learning based fully automated brain tumor segmentation tool specific for gliomas using MRI. The authors attempted to validate this method by comparing MRI-based automated brain tumor segmentation and methionine PET. Consecutively collected 45 high-grade gliomas (GBM-26, grade3-19) were analyzed. BraTumIA, an automated brain tumor segmentation tool, was used for machine learning based lesion segmentation. At the same time, lesions were segmented using various thresholds on methionine PET. The authors observed 40% of pseudo-positive and 90% of pseudo-negative error on BraTumIA based lesion segmentation when methionine PET was considered as ground truth with a cut-off of 1.3 in T/N ratio. Pseudo-negative error was as high as 60% even if the threshold was elevated to 2.0. Although machine learning based glioma segmentation is expected to expand in both research and clinical use, the observed results caution the use of MRI as ground truth of spatial extension of glioma and researchers should be reminded that this imaging modality may obscure the true behavior of the disease within the patient in some cases.


2021 ◽  
Vol 7 (9) ◽  
pp. 179
Author(s):  
Erena Siyoum Biratu ◽  
Friedhelm Schwenker ◽  
Yehualashet Megersa Ayano ◽  
Taye Girma Debelee

A brain Magnetic resonance imaging (MRI) scan of a single individual consists of several slices across the 3D anatomical view. Therefore, manual segmentation of brain tumors from magnetic resonance (MR) images is a challenging and time-consuming task. In addition, an automated brain tumor classification from an MRI scan is non-invasive so that it avoids biopsy and make the diagnosis process safer. Since the beginning of this millennia and late nineties, the effort of the research community to come-up with automatic brain tumor segmentation and classification method has been tremendous. As a result, there are ample literature on the area focusing on segmentation using region growing, traditional machine learning and deep learning methods. Similarly, a number of tasks have been performed in the area of brain tumor classification into their respective histological type, and an impressive performance results have been obtained. Considering state of-the-art methods and their performance, the purpose of this paper is to provide a comprehensive survey of three, recently proposed, major brain tumor segmentation and classification model techniques, namely, region growing, shallow machine learning and deep learning. The established works included in this survey also covers technical aspects such as the strengths and weaknesses of different approaches, pre- and post-processing techniques, feature extraction, datasets, and models’ performance evaluation metrics.


2019 ◽  
Vol 64 (2) ◽  
pp. 195-205 ◽  
Author(s):  
Behrouz Alizadeh Savareh ◽  
Hassan Emami ◽  
Mohamadreza Hajiabadi ◽  
Seyed Majid Azimi ◽  
Mahyar Ghafoori

Abstract Purpose: Manual brain tumor segmentation is a challenging task that requires the use of machine learning techniques. One of the machine learning techniques that has been given much attention is the convolutional neural network (CNN). The performance of the CNN can be enhanced by combining other data analysis tools such as wavelet transform. Materials and methods: In this study, one of the famous implementations of CNN, a fully convolutional network (FCN), was used in brain tumor segmentation and its architecture was enhanced by wavelet transform. In this combination, a wavelet transform was used as a complementary and enhancing tool for CNN in brain tumor segmentation. Results: Comparing the performance of basic FCN architecture against the wavelet-enhanced form revealed a remarkable superiority of enhanced architecture in brain tumor segmentation tasks. Conclusion: Using mathematical functions and enhancing tools such as wavelet transform and other mathematical functions can improve the performance of CNN in any image processing task such as segmentation and classification.


2021 ◽  
Vol 15 ◽  
Author(s):  
Snehal Prabhudesai ◽  
Nicholas Chandler Wang ◽  
Vinayak Ahluwalia ◽  
Xun Huan ◽  
Jayapalli Rajiv Bapuraj ◽  
...  

Accurate and consistent segmentation plays an important role in the diagnosis, treatment planning, and monitoring of both High Grade Glioma (HGG), including Glioblastoma Multiforme (GBM), and Low Grade Glioma (LGG). Accuracy of segmentation can be affected by the imaging presentation of glioma, which greatly varies between the two tumor grade groups. In recent years, researchers have used Machine Learning (ML) to segment tumor rapidly and consistently, as compared to manual segmentation. However, existing ML validation relies heavily on computing summary statistics and rarely tests the generalizability of an algorithm on clinically heterogeneous data. In this work, our goal is to investigate how to holistically evaluate the performance of ML algorithms on a brain tumor segmentation task. We address the need for rigorous evaluation of ML algorithms and present four axes of model evaluation—diagnostic performance, model confidence, robustness, and data quality. We perform a comprehensive evaluation of a glioma segmentation ML algorithm by stratifying data by specific tumor grade groups (GBM and LGG) and evaluate these algorithms on each of the four axes. The main takeaways of our work are—(1) ML algorithms need to be evaluated on out-of-distribution data to assess generalizability, reflective of tumor heterogeneity. (2) Segmentation metrics alone are limited to evaluate the errors made by ML algorithms and their describe their consequences. (3) Adoption of tools in other domains such as robustness (adversarial attacks) and model uncertainty (prediction intervals) lead to a more comprehensive performance evaluation. Such a holistic evaluation framework could shed light on an algorithm's clinical utility and help it evolve into a more clinically valuable tool.


2021 ◽  
Author(s):  
Hassan Habib ◽  
Awais Mehmood ◽  
Tahira Nazir ◽  
Marrium Nawaz ◽  
Momina Masood ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document