Efficient Multicore Scaling in Software Packet Forwarding Engines

Author(s):  
Hirochika Asai
Keyword(s):  
2021 ◽  
Vol 48 (4) ◽  
pp. 45-48
Author(s):  
Shunsuke Higuchi ◽  
Junji Takemasa ◽  
Yuki Koizumi ◽  
Atsushi Tagami ◽  
Toru Hasegawa

This paper revisits longest prefix matching in IP packet forwarding because an emerging data structure, learned index, is recently presented. A learned index uses machine learning to associate key-value pairs in a key-value store. The fundamental idea to apply a learned index to an FIB is to simplify the complex longest prefix matching operation to a nearest address search operation. The size of the proposed FIB is less than half of an existing trie-based FIB while it achieves the computation speed nearly equal to the trie-based FIB. Moreover, the computation speed of the proposal is independent of the length of IP prefixes, unlike trie-based FIBs.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4368
Author(s):  
Jitander Kumar Pabani ◽  
Miguel-Ángel Luque-Nieto ◽  
Waheeduddin Hyder ◽  
Pablo Otero

Underwater Wireless Sensor Networks (UWSNs) are subjected to a multitude of real-life challenges. Maintaining adequate power consumption is one of the critical ones, for obvious reasons. This includes proper energy consumption due to nodes close to and far from the sink node (gateway), which affect the overall energy efficiency of the system. These wireless sensors gather and route the data to the onshore base station through the gateway at the sea surface. However, finding an optimum and efficient path from the source node to the gateway is a challenging task. The common reasons for the loss of energy in existing routing protocols for underwater are (1) a node shut down due to battery drainage, (2) packet loss or packet collision which causes re-transmission and hence affects the performance of the system, and (3) inappropriate selection of sensor node for forwarding data. To address these issues, an energy efficient packet forwarding scheme using fuzzy logic is proposed in this work. The proposed protocol uses three metrics: number of hops to reach the gateway node, number of neighbors (in the transmission range of a node) and the distance (or its equivalent received signal strength indicator, RSSI) in a 3D UWSN architecture. In addition, the performance of the system is also tested with adaptive and non-adaptive transmission ranges and scalable number of nodes to see the impact on energy consumption and number of hops. Simulation results show that the proposed protocol performs better than other existing techniques or in terms of parameters used in this scheme.


2020 ◽  
Vol 53 (5) ◽  
pp. 1-34
Author(s):  
Kai Bu ◽  
Avery Laird ◽  
Yutian Yang ◽  
Linfeng Cheng ◽  
Jiaqing Luo ◽  
...  
Keyword(s):  

2015 ◽  
Vol 86 (4) ◽  
pp. 1947-1970
Author(s):  
Satish Anamalamudi ◽  
Minglu Jin ◽  
Jae Moung Kim ◽  
Chang Liu

Sign in / Sign up

Export Citation Format

Share Document