Binary Classification of Visual Scenes Using Convolutional Neural Network

Author(s):  
Aya M. Shaaban ◽  
Walid Al-Atabany ◽  
Nancy M. Salem
Author(s):  
P.L. Nikolaev

This article deals with method of binary classification of images with small text on them Classification is based on the fact that the text can have 2 directions – it can be positioned horizontally and read from left to right or it can be turned 180 degrees so the image must be rotated to read the sign. This type of text can be found on the covers of a variety of books, so in case of recognizing the covers, it is necessary first to determine the direction of the text before we will directly recognize it. The article suggests the development of a deep neural network for determination of the text position in the context of book covers recognizing. The results of training and testing of a convolutional neural network on synthetic data as well as the examples of the network functioning on the real data are presented.


2020 ◽  
Vol 14 ◽  
Author(s):  
Lahari Tipirneni ◽  
Rizwan Patan

Abstract:: Millions of deaths all over the world are caused by breast cancer every year. It has become the most common type of cancer in women. Early detection will help in better prognosis and increases the chance of survival. Automating the classification using Computer-Aided Diagnosis (CAD) systems can make the diagnosis less prone to errors. Multi class classification and Binary classification of breast cancer is a challenging problem. Convolutional neural network architectures extract specific feature descriptors from images, which cannot represent different types of breast cancer. This leads to false positives in classification, which is undesirable in disease diagnosis. The current paper presents an ensemble Convolutional neural network for multi class classification and Binary classification of breast cancer. The feature descriptors from each network are combined to produce the final classification. In this paper, histopathological images are taken from publicly available BreakHis dataset and classified between 8 classes. The proposed ensemble model can perform better when compared to the methods proposed in the literature. The results showed that the proposed model could be a viable approach for breast cancer classification.


2022 ◽  
Vol 10 (1) ◽  
pp. 0-0

Brain tumor is a severe cancer disease caused by uncontrollable and abnormal partitioning of cells. Timely disease detection and treatment plans lead to the increased life expectancy of patients. Automated detection and classification of brain tumor are a more challenging process which is based on the clinician’s knowledge and experience. For this fact, one of the most practical and important techniques is to use deep learning. Recent progress in the fields of deep learning has helped the clinician’s in medical imaging for medical diagnosis of brain tumor. In this paper, we present a comparison of Deep Convolutional Neural Network models for automatically binary classification query MRI images dataset with the goal of taking precision tools to health professionals based on fined recent versions of DenseNet, Xception, NASNet-A, and VGGNet. The experiments were conducted using an MRI open dataset of 3,762 images. Other performance measures used in the study are the area under precision, recall, and specificity.


Computation ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 3
Author(s):  
Sima Sarv Ahrabi ◽  
Michele Scarpiniti ◽  
Enzo Baccarelli ◽  
Alireza Momenzadeh

In parallel with the vast medical research on clinical treatment of COVID-19, an important action to have the disease completely under control is to carefully monitor the patients. What the detection of COVID-19 relies on most is the viral tests, however, the study of X-rays is helpful due to the ease of availability. There are various studies that employ Deep Learning (DL) paradigms, aiming at reinforcing the radiography-based recognition of lung infection by COVID-19. In this regard, we make a comparison of the noteworthy approaches devoted to the binary classification of infected images by using DL techniques, then we also propose a variant of a convolutional neural network (CNN) with optimized parameters, which performs very well on a recent dataset of COVID-19. The proposed model’s effectiveness is demonstrated to be of considerable importance due to its uncomplicated design, in contrast to other presented models. In our approach, we randomly put several images of the utilized dataset aside as a hold out set; the model detects most of the COVID-19 X-rays correctly, with an excellent overall accuracy of 99.8%. In addition, the significance of the results obtained by testing different datasets of diverse characteristics (which, more specifically, are not used in the training process) demonstrates the effectiveness of the proposed approach in terms of an accuracy up to 93%.


Author(s):  
Ruslan Babudzhan ◽  
Konstantyn Isaienkov ◽  
Oleksii Vodka ◽  
Danilo Krasiy ◽  
Ivan Zadorozhny ◽  
...  

The work describes rolling bearings operation data processing, and their use in the problem of constructing a mathematical model of the binary classification of the operating state of bearings by the method of a convolutional neural network with varying factors of dilatation of the kernel of convolutional layers. To classify bearings with defects, we used vibration acceleration data from our own test bench and a publicly available data set. The work also investigated a method for generalizing the classification of bearing signals obtained as a result of fundamentally different experiments and having different standard sizes. To unify signals, the following processing method is proposed: select data areas with displacement, go to the frequency space using fast Fourier transform, cut off frequencies exceeding 10 times the shaft rotation frequency, restore the signal while maintaining 10 shaft rotation periods, scale the received signal by dividing it by its diameter orbits of the rolling body and interpolate the signal at 2048 points. This algorithm also allows to generate a balanced sample for building a mathematical model. This feature is provided by varying the step of splitting the initial signal. The advantage of this algorithm over the classical methods of oversampling or undersampling is the generation of new objects that specify the statistical parameters of the general population. The signal processing algorithm was used both for binary classification problems within one dataset, and for training on one and testing on another. To increase the data set for training and testing the mathematical model, the bootstrapping method is used, based on multiple generation of samples using the Monte Carlo method. The quality of the mathematical model of binary classification was assessed by the proportion of correct answers. The problem is formulated as the problem of minimizing binary cross entropy. The results obtained are presented in the form of graphs demonstrating the neural network training process and graphs of the distribution density of metrics.


2021 ◽  
Author(s):  
Navneet Tibrewal ◽  
Nikki Leeuwis ◽  
Maryam Alimardani

Motor Imagery (MI) is a mental process by which an individual rehearses body movements without actually performing physical actions. Motor Imagery Brain-Computer Interfaces (MI-BCIs) are AI-driven systems that capture brain activity patterns associated with this mental process and convert them into commands for external devices. Traditionally, MI-BCIs operate on Machine Learning (ML) algorithms, which require extensive signal processing and feature engineering to extract changes in sensorimotor rhythms (SMR). However, in recent years, Deep Learning (DL) models have gained popularity for EEG classification as they provide a solution for automatic extraction of spatio-temporal features in the signals. In this study, EEG signals from 54 subjects who performed a MI task of left- or right-hand grasp was employed to compare the performance of two MI-BCI classifiers; a ML approach vs. a DL approach. In the ML approach, Common Spatial Patterns (CSP) was used for feature extraction and then Linear Discriminant Analysis (LDA) model was employed for binary classification of the MI task. In the DL approach, a Convolutional Neural Network (CNN) model was constructed on the raw EEG signals. The mean classification accuracies achieved by the CNN and CSP+LDA models were 69.42% and 52.56%, respectively. Further analysis showed that the DL approach improved the classification accuracy for all subjects within the range of 2.37 to 28.28% and that the improvement was significantly stronger for low performers. Our findings show promise for employment of DL models in future MI-BCI systems, particularly for BCI inefficient users who are unable to produce desired sensorimotor patterns for conventional ML approaches.


2020 ◽  
Vol 2020 (4) ◽  
pp. 4-14
Author(s):  
Vladimir Budak ◽  
Ekaterina Ilyina

The article proposes the classification of lenses with different symmetrical beam angles and offers a scale as a spot-light’s palette. A collection of spotlight’s images was created and classified according to the proposed scale. The analysis of 788 pcs of existing lenses and reflectors with different LEDs and COBs carried out, and the dependence of the axial light intensity from beam angle was obtained. A transfer training of new deep convolutional neural network (CNN) based on the pre-trained GoogleNet was performed using this collection. GradCAM analysis showed that the trained network correctly identifies the features of objects. This work allows us to classify arbitrary spotlights with an accuracy of about 80 %. Thus, light designer can determine the class of spotlight and corresponding type of lens with its technical parameters using this new model based on CCN.


Sign in / Sign up

Export Citation Format

Share Document