Measurement of mechanical properties of nanometer scale polymer structures using atomic force microscope

Author(s):  
Sung-Kyoung Kim ◽  
Min Kyoon Shin ◽  
Seon Jeong Kim ◽  
Haiwon Lee
Author(s):  
Hung-Sung Lin ◽  
Mong-Sheng Wu

Abstract The use of a scanning probe microscope (SPM), such as a conductive atomic force microscope (C-AFM) has been widely reported as a method of failure analysis in nanometer scale science and technology [1-6]. A beam bounce technique is usually used to enable the probe head to measure extremely small movements of the cantilever as it is moved across the surface of the sample. However, the laser beam used for a beam bounce also gives rise to the photoelectric effect while we are measuring the electrical characteristics of a device, such as a pn junction. In this paper, the photocurrent for a device caused by photon illumination was quantitatively evaluated. In addition, this paper also presents an example of an application of the C-AFM as a tool for the failure analysis of trap defects by taking advantage of the photoelectric effect.


2019 ◽  
pp. 135-142
Author(s):  
N. V. Shadrinov ◽  
U. V. Evseeva

The results of study of the influence of hollow corundum microspheres HCM-S (5–100 µm) and HCM-L (70–180 µm) on the properties of nitrile butadiene rubber BNKS-18 are presented. The dependence of elastomer resistance to abrasion impact and physic and mechanical properties on the dispersion and concentration of hollow corundum microspheres is shown. The process of hollow corundum microspheres exfoliation of the elastomeric matrix, which largely determines the change of physic and mechanical properties, has been studied by specially developed stretching device compatible with an atomic force microscope. The paper describes microspheres exfoliation which is conventionally divided into 3 stages.


2019 ◽  
Vol 9 (13) ◽  
pp. 2604 ◽  
Author(s):  
Ashley D. Slattery ◽  
Adam J. Blanch ◽  
Cameron J. Shearer ◽  
Andrew J. Stapleton ◽  
Renee V. Goreham ◽  
...  

Cantilever devices have found applications in numerous scientific fields and instruments, including the atomic force microscope (AFM), and as sensors to detect a wide range of chemical and biological species. The mechanical properties, in particular, the spring constant of these devices is crucial when quantifying adhesive forces, material properties of surfaces, and in determining deposited mass for sensing applications. A key component in the spring constant of a cantilever is the plan-view shape. In recent years, the trapezoidal plan-view shape has become available since it offers certain advantages to fast-scanning AFM and can improve sensor performance in fluid environments. Euler beam equations relating cantilever stiffness to the cantilever dimensions and Young’s modulus have been proven useful and are used extensively to model cantilever mechanical behaviour and calibrate the spring constant. In this work, we derive a simple correction factor to the Euler beam equation for a beam-shaped cantilever that is applicable to any cantilever with a trapezoidal plan-view shape. This correction factor is based upon previous analytical work and simplifies the application of the previous researchers formula. A correction factor to the spring constant of an AFM cantilever is also required to calculate the torque produced by the tip when it contacts the sample surface, which is also dependent on the plan-view shape. In this work, we also derive a simple expression for the torque for triangular plan-view shaped cantilevers and show that for the current generation of trapezoidal plan-view shaped AFM cantilevers, this will be a good approximation. We shall apply both these correction factors to determine Young’s modulus for a range of trapezoidal-shaped AFM cantilevers, which are specially designed for fast-scanning. These types of AFM probes are much smaller in size when compared to standard AFM probes. In the process of analysing the mechanical properties of these cantilevers, important insights are also gained into their spring constant calibration and dimensional factors that contribute to the variability in their spring constant.


Sign in / Sign up

Export Citation Format

Share Document