1.8 MeV Proton Testing of Thermally Stabilized GaN HEMT RF Power Devices in Three Operational Modes

Author(s):  
M. W. McCurdy ◽  
R. D. Schrimpf ◽  
D. M. Fleetwood ◽  
K. Bole ◽  
B. S. Poling
Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4160
Author(s):  
Xiaobin Li ◽  
Hongbo Ma ◽  
Junhong Yi ◽  
Song Lu ◽  
Jianping Xu

Compared with conventional forward converters, active clamp forward (ACF) converters have many advantages, including lower voltage stress on the primary power devices, the ability to switch at zero voltage, reduced EMI and duty cycle operation above 50%. Thus, it has been the most popular solution for the low bus voltage applications, such as 48 V and 28 V. However, because of the poor performance of Si MOSFETs, the efficiency of active clamp forward converters is difficult to further improved. Focusing on the bus voltage of 28 V with 18~36 V voltage range application, the Gallium Nitride high electron-mobility transistors (GaN HEMT) with ultralow on-resistance, low parasitic capacitances, and no reverse recovery, is incorporated into active clamp forward converters for achieving higher efficiency and power density, in this paper. Meanwhile, the comparative analysis is performed for Si MOSFET and GaN HEMT. In order to demonstrate the feasibility and validity of the proposed solution and comparative analysis, two 18~36 V input, 120 W/12 V output, synchronous rectification prototype with different power devices are built and compared in the lab. The experimental results show the GaN version can achieve the efficiency of 95.45%, which is around 1% higher than its counterpart under the whole load condition and the same power density of 2.2 W/cm3.


2005 ◽  
Vol 483-485 ◽  
pp. 765-768 ◽  
Author(s):  
Jun Hai Xia ◽  
E. Rusli ◽  
R. Gopalakrishnan ◽  
S.F. Choy ◽  
Chin Che Tin ◽  
...  

Reactive ion etching of SiC induced surface damage, e.g., micromasking effect induced coarse and textured surface, is one of the main concerns in the fabrication of SiC based power devices [1]. Based on CHF3 + O2 plasma, 4H-SiC was etched under a wide range of RF power. Extreme coarse and textured etched surfaces were observed under certain etching conditions. A super-linear relationship was found between the surface roughness and RF power when the latter was varied from 40 to 160 W. A further increase in the RF power to 200 W caused the surface roughness to drop abruptly from its maximum value of 182.4 nm to its minimum value of 1.3 nm. Auger electron spectroscopy (AES) results revealed that besides the Al micromasking effect, the carbon residue that formed a carbon-rich layer, could also play a significant role in affecting the surface roughness. Based on the AES results, an alternative explanation on the origin of the coarse surface is proposed.


2009 ◽  
Vol 1203 ◽  
Author(s):  
Maria Cristina Rossi ◽  
Paolo Calvani ◽  
Gennaro Conte ◽  
Vittorio Camarchia ◽  
Federica Cappelluti ◽  
...  

AbstractLarge-signal radiofrequency performances of surface channel diamond MESFET fabricated on hydrogenated polycrystalline diamond are investigated. The adopted device structure is a typical coplanar two-finger gate layout, characterized in DC by an accumulation-like behavior with threshold voltage Vt ∼ 0-0.5 V and maximum DC drain current of 120 mA/mm. The best radiofrequency performances (in terms of fT and fmax) were obtained close to the threshold voltage. Realized devices are analyzed in standard class A operation, at an operating frequency of 2 GHz. The MESFET devices show a linear power gain of 8 dB and approximately 0.2 Wmm RF output power with 22% power added efficiency. An output power density of about 0.8 W/mm can be then extrapolated at 1 GHz, showing the potential of surface channel MESFET technology on polycrystalline diamond for microwave power devices.


Author(s):  
Subrata Halder ◽  
Faramarz Kharabi ◽  
Tim Howle ◽  
John McMacken ◽  
Christopher Burns ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document