Improved performance of GaAs radiation detectors

Author(s):  
F. Nava ◽  
G. Bertuccio ◽  
P. Vanni ◽  
M.E. Fantacci ◽  
C. Canali ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
P. Boutachkov ◽  
K. O. Voss ◽  
K. Lee ◽  
M. S. Song ◽  
C. Yi ◽  
...  

AbstractThis paper discusses the use of nanomaterials for the improved performance of time-of-flight particle detectors based on secondary electron emission (SEE). The purpose of the research presented in this paper is to find a nanomaterial that has a higher SEE than gold. In this article, we present a measurement of the SEE properties from 1D (one-dimensional) nanostructures of ZnO and ZnO/GaN (ZnO with GaN coating) composed of a mostly regular pattern of nanotubes grown on a thin Si3N4 substrate. The study was performed with 4.77 meV/u Au beam. We observed an average increase of 2.5 in the SEE properties from the 1D ZnO nanotubes compared to gold.


1997 ◽  
Vol 44 (3) ◽  
pp. 943-949 ◽  
Author(s):  
F. Nava ◽  
G. Bertuccio ◽  
P. Vanni ◽  
M.E. Fantacci ◽  
C. Canali ◽  
...  

2009 ◽  
Vol 1164 ◽  
Author(s):  
Jeffrey Derby ◽  
David Gasperino ◽  
Nan Zhang ◽  
Andrew Yeckel

AbstractThe availability of large, single crystals of cadmium zinc telluride (CZT) with uniform properties would lead to improved performance of gamma radiation detectors fabricated from them. However, even though CZT crystals are the central element of these systems, there remains relatively little fundamental understanding about how these crystals grow and, especially, how crystal growth conditions affect the properties of grown crystals. This paper discusses the many challenges of growing better CZT crystals and how modeling may favorably impact these challenges. Our thesis is that crystal growth modeling is a powerful tool to complement experiments and characterization. It provides an important approach to close the loop between materials discovery, device research, systems performance, and producibility. Specifically, we discuss our efforts to model gradient freeze furnaces used to grow large CZT crystals at Pacific Northwest National Laboratories and Washington State University. Model results are compared with experimental measurements, and the insight gained from modeling is discussed.


Author(s):  
Gertrude. F. Rempfer

Optimum performance in electron and ion imaging instruments, such as electron microscopes and probe-forming instruments, in most cases depends on a compromise either between imaging errors due to spherical and chromatic aberrations and the diffraction error or between the imaging errors and the current in the image. These compromises result in the use of very small angular apertures. Reducing the spherical and chromatic aberration coefficients would permit the use of larger apertures with resulting improved performance, granted that other problems such as incorrect operation of the instrument or spurious disturbances do not interfere. One approach to correcting aberrations which has been investigated extensively is through the use of multipole electric and magnetic fields. Another approach involves the use of foil windows. However, a practical system for correcting spherical and chromatic aberration is not yet available.Our approach to correction of spherical and chromatic aberration makes use of an electrostatic electron mirror. Early studies of the properties of electron mirrors were done by Recknagel. More recently my colleagues and I have studied the properties of the hyperbolic electron mirror as a function of the ratio of accelerating voltage to mirror voltage. The spherical and chromatic aberration coefficients of the mirror are of opposite sign (overcorrected) from those of electron lenses (undercorrected). This important property invites one to find a way to incorporate a correcting mirror in an electron microscope. Unfortunately, the parts of the beam heading toward and away from the mirror must be separated. A transverse magnetic field can separate the beams, but in general the deflection aberrations degrade the image. The key to avoiding the detrimental effects of deflection aberrations is to have deflections take place at image planes. Our separating system is shown in Fig. 1. Deflections take place at the separating magnet and also at two additional magnetic deflectors. The uncorrected magnified image formed by the objective lens is focused in the first deflector, and relay lenses transfer the image to the separating magnet. The interface lens and the hyperbolic mirror acting in zoom fashion return the corrected image to the separating magnet, and the second set of relay lenses transfers the image to the final deflector, where the beam is deflected onto the projection axis.


Sign in / Sign up

Export Citation Format

Share Document