Using rare event modeling & networking to build scenarios and forecast the future

Author(s):  
Chris Arney ◽  
Kate Coronges ◽  
Hilary Fletcher ◽  
John Hagen ◽  
Kira Hutchinson ◽  
...  
Keyword(s):  
2020 ◽  
Author(s):  
Ishanu Chattopadhyay ◽  
Yi Huang ◽  
James Evans

Abstract Complex phenomena of societal interest such as weather, seismic activity and urban crime, are often punctuated by rare and extreme events, which are difficult to model and predict. Evidence of long-range persistence of such events has underscored the need to learn deep stochastic structures in data for effective forecasts. Recently neural networks (NN) have emerged as a defacto standard for deep learning. However, key problems remain with NN inference, including a high sample complexity, a general lack of transparency, and a limited ability to directly model stochastic phenomena. In this study we suggest that deep learning and the NN paradigm are conceptually distinct -- and that it is possible to learn ``deep' associations without invoking the ubiquitous NN strategy of global optimization via back-propagation. We show that deep learning of stochastic phenomena is related to uncovering the emergent self-similarities in data, which avoids the NN pitfalls offering crucial insights into underlying mechanisms. Using the Fractal Net (FN) architecture introduced here, we actionably forecast various categories of rare weather and seismic events, and property and violent crimes in major US cities. Compared to carefully tuned NNs, we boost recall at 90% precision by 161.9% for extreme weather events, 191.3% for light-to-severe seismic events with magnitudes above the local third quartile, and 50.8% - 404.9% for urban crime, demonstrating applicability in diverse systems of societal interest. This study opens the door to precise prediction of rare events in spatio-temporal phenomena, adding a new tool to the data science revolution.


2021 ◽  
Vol 923 (2) ◽  
pp. 236
Author(s):  
Dorian S. Abbot ◽  
Robert J. Webber ◽  
Sam Hadden ◽  
Darryl Seligman ◽  
Jonathan Weare

Abstract Due to the chaotic nature of planetary dynamics, there is a non-zero probability that Mercury’s orbit will become unstable in the future. Previous efforts have estimated the probability of this happening between 3 and 5 billion years in the future using a large number of direct numerical simulations with an N-body code, but were not able to obtain accurate estimates before 3 billion years in the future because Mercury instability events are too rare. In this paper we use a new rare-event sampling technique, Quantile Diffusion Monte Carlo (QDMC), to estimate that the probability of a Mercury instability event in the next 2 billion years is approximately 10−4 in the REBOUND N-body code. We show that QDMC provides unbiased probability estimates at a computational cost of up to 100 times less than direct numerical simulation. QDMC is easy to implement and could be applied to many problems in planetary dynamics in which it is necessary to estimate the probability of a rare event.


2021 ◽  
pp. 219-226
Author(s):  
И.Ю. Липко

Статья посвящена вопросу моделирования редких событий, которые возникают при качке катамарана. Система управления автономного катамарана должна уметь распознавать нежелательные ситуации, которые могут привести к осуществлению редких событий. В данной статье приводится несколько методов, позволяющих проводить моделирование редких событий и делать оценку риска возникновения редкого события. Методы основываются на теории больших уклонений. Первый метод позволяет оценить возможные «ожидаемые потери» при достижении редкого события путём оценки скорости убывания вероятности компонентов вектора состояния в редком состоянии. Оценка осуществляется путём расчёта квазипотенциалов из аттрактора до порогового значения состояния. Второй метод позволяет оценить вероятность движения вдоль наиболее вероятной траектории к редкому событию. Оценка осуществляется путём сравнения вектора состояния с состояниями на наиболее вероятной траектории к редкому событию. Точность оценок зависит от вектора состояния. Приводится сравнение с результатами, полученными с помощью метода Монте-Карло. Указанные методы могут быть использованы для создания систем супервизорного управления и систем поддержки принятия решений при оценке рискованности совершения морских переходов. The article is devoted to the issue of modeling rare events that occur when a catamaran is pitching. The control system of an autonomous catamaran should be able to recognize undesirable situations that can lead to the rare events. This article provides several methods for modeling rare events and making estimation of risk of a rare event occurrence. The methods are based on the large deviations theory for dynamical systems. The first method allows to estimate possible losses via calculation of the probability decreasing rate of the state vector components in a rare state. The estimation is carried out by calculating the quasipotential from the state close to the attractor to the threshold state. The second method allows to estimate the probability of moving along the most likely trajectory to a rare event. The evaluation is carried out by comparing the studied state vector with the states on the most likely trajectory. The accuracy of the estimates depends on the studied state vector. A comparison with the results obtained using the Monte Carlo method. These methods can be used to create supervisory control systems and decision support systems when assessing the riskiness of sea navigation.


1961 ◽  
Vol 13 ◽  
pp. 29-41
Author(s):  
Wm. Markowitz
Keyword(s):  

A symposium on the future of the International Latitude Service (I. L. S.) is to be held in Helsinki in July 1960. My report for the symposium consists of two parts. Part I, denoded (Mk I) was published [1] earlier in 1960 under the title “Latitude and Longitude, and the Secular Motion of the Pole”. Part II is the present paper, denoded (Mk II).


1978 ◽  
Vol 48 ◽  
pp. 387-388
Author(s):  
A. R. Klemola
Keyword(s):  

Second-epoch photographs have now been obtained for nearly 850 of the 1246 fields of the proper motion program with centers at declination -20° and northwards. For the sky at 0° and northward only 130 fields remain to be taken in the next year or two. The 270 southern fields with centers at -5° to -20° remain for the future.


Author(s):  
Godfrey C. Hoskins ◽  
Betty B. Hoskins

Metaphase chromosomes from human and mouse cells in vitro are isolated by micrurgy, fixed, and placed on grids for electron microscopy. Interpretations of electron micrographs by current methods indicate the following structural features.Chromosomal spindle fibrils about 200Å thick form fascicles about 600Å thick, wrapped by dense spiraling fibrils (DSF) less than 100Å thick as they near the kinomere. Such a fascicle joins the future daughter kinomere of each metaphase chromatid with those of adjacent non-homologous chromatids to either side. Thus, four fascicles (SF, 1-4) attach to each metaphase kinomere (K). It is thought that fascicles extend from the kinomere poleward, fray out to let chromosomal fibrils act as traction fibrils against polar fibrils, then regroup to join the adjacent kinomere.


Sign in / Sign up

Export Citation Format

Share Document