Heat transfer and multiphase flow with hydrate formation in subsea pipelines

Author(s):  
A. Odukoya ◽  
G. F. Naterer
2018 ◽  
Vol 140 (8) ◽  
Author(s):  
Xiaohui Sun ◽  
Baojiang Sun ◽  
Yonghai Gao ◽  
Zhiyuan Wang

The interaction between hydrated bubble growth and multiphase flow dynamics is important in deepwater wellbore/pipeline flow. In this study, we derived a hydrate shell growth model considering the intrinsic kinetics, mass and heat transfer, and hydrodynamics mechanisms in which a partly coverage assumption is introduced for elucidating the synergy of bubble hydrodynamics and hydrate morphology. Moreover, a hydro-thermo-hydrate model is developed considering the intercoupling effects including interphase mass and heat transfer, and the slippage of hydrate-coated bubble. Through comparison with experimental data, the performance of proposed model is validated and evaluated. The model is applied to analyze the wellbore dynamics process of kick evolution during deepwater drilling. The simulation results show that the hydrate formation region is mainly near the seafloor affected by the fluid temperature and pressure distributions along the wellbore. The volume change and the mass transfer rate of a hydrated bubble vary complicatedly, because of hydrate formation, hydrate decomposition, and bubble dissolution (both gas and hydrate). Moreover, hydrate phase transition can significantly alter the void fraction and migration velocity of free gas in two aspects: (1) when gas enters the hydrate stability field (HSF), a solid hydrate shell will form on the gas bubble surface, and thereby, the velocity and void fraction of free gas can be considerably decreased; (2) the free gas will separate from solid hydrate and expand rapidly near the sea surface (outside the HSF), which can lead to an abrupt hydrostatic pressure loss and explosive development of the gas kick.


Author(s):  
Adedoyin Odukoya ◽  
Greg F. Naterer

A numerical model is developed to examine the flow conditions of multiphase heat transfer and entropy production during hydrate formation in subsea pipelines. The temperature and pressure gradients of the oil and gas flow in subsea pipelines lead to entropy generation. This paper examines the impacts and effects of thermodynamic irreversibilities on the nucleation and growth processes of hydrate crystals in the pipeline flows. The effects of heat transfer ratio, internal diameter of the pipe, molar gas density, and environment temperature on entropy production in subsea pipelines are predicted and discussed in this paper. The numerical model accounts for the temperature distribution along the axial length of the pipe, reaction kinetics, and mass transfer between the solid and fluid layer. The kinetic energy of the hydrate particles during the coagulation process is analyzed in the numerical model. The results indicate that entropy production is highest at the beginning of the nucleation process. Pipelines with smaller internal radii have a lower rate of hydrate formation in subsea pipelines. The results from the numerical model are verified by comparison with experimental results for structure type II natural gas hydrates.


Author(s):  
Youqiang Liao ◽  
Xiaohui Sun ◽  
Zhiyuan Wang ◽  
Baojiang Sun

Abstract Hydrate is ice-like solid non-stoichiometric crystalline compound, which is stable at favorable low temperature and high-pressure conditions. The predominant gas component stored in naturally-occurring hydrate bearing sediment is CH4 and is estimated about 3000–20000 trillion cubic meter worldwide. Thus, it has attracted significant research interests as an energy source from both academic and industry for the past two decades. Ensuring drilling safety is much important to realize efficient exploitation of hydrate source. Additionally, accurate prediction of wellbore temperature field is of great significance to the design of drilling fluid and cement slurry and the analysis of wellbore stability. However, the heat transfer process in wellbore and hydrate layer during drilling through hydrate formation is a complex phenomenon. The calculation method used in the conventional formation cannot be fully applied to hydrate reservoir drilling, largely due to the complex interactions between the hydrate decomposition, multiphase flow and heat transfer behaviors. In this study, an improved thermal model of wellbore for hydrate layer drilling process is presented by coupling the dynamic decomposition of hydrate, the transportation of hydrate particles in cuttings and heat transfer behaviors in multiphase flow. The distribution of temperature field and rules of hydrate decomposition both in wellbore and hydrate layers are thoroughly analyzed with case study, which is very helpful for the designing drilling parameters, avoiding the gas kick accidents. As well as making a detailed guidance of wellbore stability analysis. This proposed mathematical model is a more in-depth extension of the conventional temperature field prediction model of wellbore, it can present some important implications for drilling through gas–hydrate formation for practical projects.


Fuel ◽  
2021 ◽  
Vol 306 ◽  
pp. 121655
Author(s):  
Xuewen Cao ◽  
Kairan Yang ◽  
Hongchao Wang ◽  
Jiang Bian

2021 ◽  
Author(s):  
Ronald E. Vieira ◽  
Thiana A. Sedrez ◽  
Siamack A. Shirazi ◽  
Gabriel Silva

Abstract Air-water two-phase flow in circular pipes has been studied by many investigators. However, investigations of multiphase flow in non-circular pipes are still very rare. Triangular pipes have found a number of applications, such as multiphase flow conditioning, erosion mitigation in elbows, compact heat exchanges, solar heat collectors, and electronic cooling systems. This work presents a survey of air-water and air-water-sand flow through circular and triangular pipes. The main objective of this investigation is to study the potential effects of triangular pipe geometry on flow patterns, slug frequency, sand erosion in elbows, and heat transfer in multiphase flow. Firstly, twenty-three experiments were performed for horizontal air-water flow. Detailed videos and slug frequency measurements were collected through circular and triangular clear pipes to identify flow patterns and create a database for these pipe configurations. The effect of corners of the triangular pipe on the liquid distribution was investigated using two different orientations of triangular pipe: apex upward and downward and results of triangular pipes were compared to round tubes. Secondly, ultrasonic wall thickness erosion measurements, paint removal studies, and CFD simulations were carried out to investigate the erosion patterns and magnitudes for liquid-sand and liquid-gas-sand flows in circular and triangular elbows with the same radius of curvature and cross-sectional area. Thirdly, heat transfer rates for liquid flows were also simulated for both circular and triangular pipe cross-sections. Although similar flow patterns are observed in circular and triangular pipe configurations, the orientation of the triangular pipes seems to have an effect on the liquid distribution and slug frequency. For higher liquid rates, slug frequencies are consistently lower in the triangular pipe as compared to the circular pipe. Similarly, the triangular elbow offers better flow behavior as compared to circular elbows when investigated numerically with similar flow rates for erosion patterns for both liquid-sand flow and liquid-gas-sand flows. Experimental and CFD results show that erosion in the circular elbow is about three times larger than in the triangular elbow. Paint studies results validated erosion patterns and their relations with particle impacts. Finally, heat transfer to/from triangular pipes is shown to be more efficient than in circular pipes, making them attractive for compact heat exchangers and heat collectors. This paper represents a novel experimental work and CFD simulations to examine the effects of pipe geometries on multiphase flow in pipes with several practical applications. The present results will help to determine the efficiency of utilizing triangular pipes as compared to circular pipes for several important applications and field operations such as reducing slug frequencies of multiphase flow in pipes, and reducing solid particle erosion of elbows, and also increasing the efficiency of heat exchangers.


Author(s):  
Mubbashar Nazeer ◽  
Farooq Hussain ◽  
Laiba Shabbir ◽  
Adila Saleem ◽  
M. Ijaz Khan ◽  
...  

In this paper, the two-phase flow of non-Newtonian fluid is investigated. The main source of the flow is metachronal waves which are caused by the back and forth motion of cilia attached to the opposite walls of the channel. Magnetohydrodynamics (MHD) of Casson fluid experience the effects of transverse magnetic fields incorporated with the slippery walls of the channel. Thermal effects are examined by taking Roseland’s approximation and application of thermal radiation into account. The heat transfer through the multiphase flow of non-Newtonian fluid is further, compared with Newtonian bi-phase flow. Since the main objective of the current study is to analyze heat transfer through an MHD multiphase flow of Casson fluid. The two-phase heated flow of non-Newtonian fluid is driven by cilia motion results in nonlinear and coupled differential equations which are transformed and subsequently, integrated subject to slip boundary conditions. A closed-form solution is eventually obtained form that effectively describes the flow dynamics of multiphase flow. A comprehensive parametric study is carried out which highlights the significant contribution of pertinent parameters of the heat transfer of Casson multiphase flow. It is inferred that lubricated walls and magnetic fields hamper the movement of multiphase flow. It is noted that a sufficient amount of additional thermal energy moves into the system, due to the Eckert number and Prandtl number. While thermal radiation acts differently by expunging the heat transfer. Moreover, Casson multiphase flow is a more suitable source of heat transfer than Newtonian multiphase flow.


Sign in / Sign up

Export Citation Format

Share Document