Ship Route Optimization Considering On-Time Arrival Probability Under Environmental Uncertainty

Author(s):  
Byunghyun Yoo ◽  
Jinwhan Kim
2014 ◽  
Vol 48 (3) ◽  
pp. 115-124 ◽  
Author(s):  
Li Yuankui ◽  
Zhang Yingjun ◽  
Zhu Feixiang

AbstractAs a result of a global call for energy-saving and emission-reduction strategies as well as an urgent need to reduce the shipping cost of transoceanic crossings, this paper proposes a route that minimizes the time for such crossings and provides technical support to efficiently utilize wind power based on existing research for wind-assisted ships. To begin, the ocean winds around the ship route were analyzed, and the different influences on traditional ships and wind-assisted ships were listed for various wind speeds and directions. The number of waypoints of a route was subsequently calculated, and a model of the optimal ship route was then built based on the fixed power output of the main marine engine. A solution algorithm based on simulated annealing was then presented to determine the optimal wind-assisted ship routes by minimizing the travel time. Finally, a 76,000-DWT wind-assisted cargo ship was designated as the experimental ship, and the optimization model and its algorithm were simulated to generate an optimized wind-assisted route. The simulation indicated that the speed of a ship equipped with wind propulsion increases, which significantly reduces the travel time and fuel costs over the optimized route, despite the increased distance of this route. Thus, the route optimization algorithm designed in this study can be applied to optimize the routes for wind-assisted ships and theoretically guide further studies of wind-assisted projects.


2021 ◽  
Vol 9 (12) ◽  
pp. 1434
Author(s):  
Roberto Vettor ◽  
Giovanni Bergamini ◽  
C. Guedes Soares

This work aims at defining in a probabilistic manner objectives and constraints typically considered in route optimization systems. Information about weather-related uncertainties is introduced by adopting ensemble forecast results. Classical reliability methods commonly used in structural analysis are adopted, allowing to achieve a simple yet effective evaluation of the probability of failure and the variability associated with the predicted fuel consumption and time of arrival. A quantitative example of application is provided, taking into consideration one of the main North Atlantic routes.


2019 ◽  
Vol 73 (2) ◽  
pp. 364-383
Author(s):  
Ville V. Lehtola ◽  
Jakub Montewka ◽  
Johanna Salokannel

Safety in ice-covered polar waters can be optimised via the choice of a ship's route. This is of utmost importance for conventional as well as autonomous ships. However, the current state of the art in e-Navigation tools has left two open questions. First, what essential information are these tools still missing, and second, how they are seen by sea captains. In order to address these questions, we organised an ice navigation workshop to systematically collect routing justifications given by and waypoints planned by experienced sea captains that are particularly seasoned in ice navigation. Here, we report the outcome of that workshop. Our key findings include the reasoning and the commentary of the participants in looking for a better and safer route. These comments shed light upon both the official and unofficial code of conduct in open waters and boil down into a list of additional prerequisite information if further steps towards system autonomy are sought. Finally, the expert-planned waypoints are to be published alongside this paper to act as a benchmark for future maritime studies.


2019 ◽  
Vol 139 (4) ◽  
pp. 401-408
Author(s):  
Shunya Tanabe ◽  
Zeyuan Sun ◽  
Masayuki Nakatani ◽  
Yutaka Uchimura

Sign in / Sign up

Export Citation Format

Share Document