scholarly journals A Comprehensive Approach to Account for Weather Uncertainties in Ship Route Optimization

2021 ◽  
Vol 9 (12) ◽  
pp. 1434
Author(s):  
Roberto Vettor ◽  
Giovanni Bergamini ◽  
C. Guedes Soares

This work aims at defining in a probabilistic manner objectives and constraints typically considered in route optimization systems. Information about weather-related uncertainties is introduced by adopting ensemble forecast results. Classical reliability methods commonly used in structural analysis are adopted, allowing to achieve a simple yet effective evaluation of the probability of failure and the variability associated with the predicted fuel consumption and time of arrival. A quantitative example of application is provided, taking into consideration one of the main North Atlantic routes.

2014 ◽  
Vol 48 (3) ◽  
pp. 115-124 ◽  
Author(s):  
Li Yuankui ◽  
Zhang Yingjun ◽  
Zhu Feixiang

AbstractAs a result of a global call for energy-saving and emission-reduction strategies as well as an urgent need to reduce the shipping cost of transoceanic crossings, this paper proposes a route that minimizes the time for such crossings and provides technical support to efficiently utilize wind power based on existing research for wind-assisted ships. To begin, the ocean winds around the ship route were analyzed, and the different influences on traditional ships and wind-assisted ships were listed for various wind speeds and directions. The number of waypoints of a route was subsequently calculated, and a model of the optimal ship route was then built based on the fixed power output of the main marine engine. A solution algorithm based on simulated annealing was then presented to determine the optimal wind-assisted ship routes by minimizing the travel time. Finally, a 76,000-DWT wind-assisted cargo ship was designated as the experimental ship, and the optimization model and its algorithm were simulated to generate an optimized wind-assisted route. The simulation indicated that the speed of a ship equipped with wind propulsion increases, which significantly reduces the travel time and fuel costs over the optimized route, despite the increased distance of this route. Thus, the route optimization algorithm designed in this study can be applied to optimize the routes for wind-assisted ships and theoretically guide further studies of wind-assisted projects.


Author(s):  
Mir Emad Mousavi ◽  
Sanjeev Upadhye ◽  
Kevin Haverty

The design of riser systems can be improved if structural reliability methods are used to assess their safety and integrity and confirm that such design meets a target annual probability of failure. TTRs are typically multi–bore assemblies involving several sub-assemblies. The failure of any of the components of a TTR under extreme or service environmental conditions can lead to an immediate failure of the entire assembly and impose a direct risk of damaging the wellheads, conductors, casing and tubing hangers, or other subsea equipment, because they are installed directly on top of the wellhead. However, the actual strength safety of the TTR cannot be examined unless after it is installed and examined under extreme events. Because of the numerous uncertainties associated with the design of TTRs, a probabilistic approach based on structural reliability methods can account for many of those uncertainties and serve as a basis for their reliable and cost-effective design. In turn, a comprehensive reliability assessment of a TTR requires extensive analysis that is considerably more complex and time consuming compared to a conventional deterministic-based analysis. This paper presents a probabilistic-based simplified methodology for the strength reliability assessment of TTR systems. In this method, marginal values on some uncertain model inputs are considered similar to the conventional analysis methods but, some key random variables related to environmental demands and component capacities are considered with their associated probability distributions. As a result, this method can be used to estimate the minimum level of safety of the TTR under extreme events. Additionally, results of the proposed method are discussed for integrity analysis and integrity-based optimal design of the TTR system, which compare the safety of the TTR components and estimate the component Optimality Factors for improving the design integrity and meeting a target minimum annual probability of failure.


2022 ◽  
Vol 3 (1) ◽  
pp. 21-44
Author(s):  
Sonja Murto ◽  
Rodrigo Caballero ◽  
Gunilla Svensson ◽  
Lukas Papritz

Abstract. Atmospheric blocking can influence Arctic weather by diverting the mean westerly flow and steering cyclones polewards, bringing warm, moist air to high latitudes. Recent studies have shown that diabatic heating processes in the ascending warm conveyor belt branch of extratropical cyclones are relevant to blocking dynamics. This leads to the question of the extent to which diabatic heating associated with mid-latitude cyclones may influence high-latitude blocking and drive Arctic warm events. In this study we investigate the dynamics behind 50 extreme warm events of wintertime high-Arctic temperature anomalies during 1979–2016. Classifying the warm events based on blocking occurrence within three selected sectors, we find that 30 of these events are associated with a block over the Urals, featuring negative upper-level potential vorticity (PV) anomalies over central Siberia north of the Ural Mountains. Lagrangian back-trajectory calculations show that almost 60 % of the air parcels making up these negative PV anomalies experience lifting and diabatic heating (median 11 K) in the 6 d prior to the block. Further, almost 70 % of the heated trajectories undergo maximum heating in a compact region of the mid-latitude North Atlantic, temporally taking place between 6 and 1 d before arriving in the blocking region. We also find anomalously high cyclone activity (on average five cyclones within this 5 d heating window) within a sector northwest of the main heating domain. In addition, 10 of the 50 warm events are associated with blocking over Scandinavia. Around 60 % of the 6 d back trajectories started from these blocks experience diabatic heating, of which 60 % undergo maximum heating over the North Atlantic but generally closer to the time of arrival in the block and further upstream relative to heated trajectories associated with Ural blocking. This study suggests that, in addition to the ability of blocks to guide cyclones northwards, Atlantic cyclones play a significant role in the dynamics of high-latitude blocking by providing low-PV air via moist-diabatic processes. This emphasizes the importance of the mutual interactions between mid-latitude cyclones and Eurasian blocking for wintertime Arctic warm extremes.


2019 ◽  
Vol 73 (2) ◽  
pp. 364-383
Author(s):  
Ville V. Lehtola ◽  
Jakub Montewka ◽  
Johanna Salokannel

Safety in ice-covered polar waters can be optimised via the choice of a ship's route. This is of utmost importance for conventional as well as autonomous ships. However, the current state of the art in e-Navigation tools has left two open questions. First, what essential information are these tools still missing, and second, how they are seen by sea captains. In order to address these questions, we organised an ice navigation workshop to systematically collect routing justifications given by and waypoints planned by experienced sea captains that are particularly seasoned in ice navigation. Here, we report the outcome of that workshop. Our key findings include the reasoning and the commentary of the participants in looking for a better and safer route. These comments shed light upon both the official and unofficial code of conduct in open waters and boil down into a list of additional prerequisite information if further steps towards system autonomy are sought. Finally, the expert-planned waypoints are to be published alongside this paper to act as a benchmark for future maritime studies.


2020 ◽  
Vol 92 (7) ◽  
pp. 1063-1072
Author(s):  
Muhaned Gilani ◽  
Durmuş Sinan Körpe

Purpose This paper aims to minimize aircraft fuel consumption during the cruise phase when the flight is subjected to a specific time of arrival for different weights and distances. Design/methodology/approach The approach adopted herein uses sequential quadratic programming algorithm from MATLAB optimization toolbox, which includes a mathematical model of a jet airliner based on the Base of Aircraft Data as a function evaluator, to find out the impact of meet-time of arrival constraints on fuel consumption. The cruising speeds at predefined segments and the altitude are defined as the design variables. Findings The algorithm determines the optimum cruise altitudes and speeds for minimum fuel consumption in the case of no time constraints, also, for different time constraints where the flight time shall be reduced by increasing speed and lowering the altitude in most of the investigated cases. Practical implications The algorithm computes the optimum speed and the altitude according to different flight scenarios with the meet-time of arrival constraints for minimum fuel consumption which affects the direct operating cost of the flight. The algorithm might greatly help in decision-making for the meet-time of arrival operations. Originality/value Developing an algorithm to optimize the speed and the altitude of an aircraft based on weight and range for minimization of fuel consumption. It is a pioneer study in the literature that deals with the effect of meet-time constraints on fuel consumption.


2010 ◽  
Vol 14 (suppl.) ◽  
pp. 67-78 ◽  
Author(s):  
Nebojsa Jovicic ◽  
Goran Boskovic ◽  
Goran Vujic ◽  
Gordana Jovicic ◽  
Milan Despotovic ◽  
...  

Collection and transportation within the system of solid waste management may account more than 60% of the overall budget, most of which is for fuel costs. Furthermore, municipal vehicles have great environmental impact through exhaust gases emissions. The aim of this research was to estimate the potential for reduction of fuel consumption and thus the emission of CO2 through the communal vehicles route optimization. General methodology for route optimization is also presented. For the area under study, detailed field experimental research in the City of Kragujevac was conducted. Using GIS and GPS technology, whole municipally infrastructure for waste collection was scanned and all paths of communal tracks was recorded and allocated in developed database. Based on experimental and numerical results, one typical municipal vehicle route was analyzed by using ArcGis software. The obtained result indicates 2700 km of possible savings per year concerning one communal vehicle. In addition, the most fuel-economical route was extracted and compared with the original route, and with the routes extracted from criterions concerning the traffic time and shortest distance. According to available information for the City of Kragujevac and the results from this study, it was estimated that the total savings could be 20% in costs and the associated emissions.


1965 ◽  
Vol 18 (2) ◽  
pp. 123-140 ◽  
Author(s):  
S. M. Serebreny

This paper, which was presented at an Ordinary Meeting of the Institute held in London on 20 November, 1964, presents the results of a study on the interrelation of cruise fuel consumption, temperature and track selection in supersonic transport operations on the New York–London/Paris route. The range of temperature variations at S.S.T. altitudes over the North Atlantic for 26 months is illustrated and from this data period 24 cases are chosen to reflect extreme departures from standard and to give a seasonal distribution of such variation. The results of the application of a computerized nasa programme to these 24 cases to determine whether diversion from the great circle is warranted, in terms of economy of cruise fuel consumption due to existing temperature gradients over the area, are then discussed and illustrated.The results of a general solution, taking into account all these considerations, applied to an additional 117 cases are also discussed and illustrated. Finally the influence of climb fuel consumption upon cruise fuel consumption and data requirements for temperature forecasts in climb and cruise are discussed.


2021 ◽  
Vol 9 (4) ◽  
pp. 357
Author(s):  
Wei Zhao ◽  
Yan Wang ◽  
Zhanshuo Zhang ◽  
Hongbo Wang

With the continuous prosperity and development of the shipping industry, it is necessary and meaningful to plan a safe, green, and efficient route for ships sailing far away. In this study, a hybrid multicriteria ship route planning method based on improved particle swarm optimization–genetic algorithm is presented, which aims to optimize the meteorological risk, fuel consumption, and navigation time associated with a ship. The proposed algorithm not only has the fast convergence of the particle swarm algorithm but also improves the diversity of solutions by applying the crossover operation, selection operation, and multigroup elite selection operation of the genetic algorithm and improving the Pareto optimal frontier distribution. Based on the Pareto optimal solution set obtained by the algorithm, the minimum-navigation-time route, the minimum-fuel-consumption route, the minimum-navigation-risk route, and the recommended route can be obtained. Herein, a simulation experiment is conducted with respect to a container ship, and the optimization route is compared and analyzed. Experimental results show that the proposed algorithm can plan a series of feasible ship routes to ensure safety, greenness, and economy and that it provides route selection references for captains and shipping companies.


Sign in / Sign up

Export Citation Format

Share Document