An isolated ZVS-PWM active clamping nonpulsating input and output current DC-DC converter

Author(s):  
E.F.R. Romaneli ◽  
I. Barbi
Author(s):  
G. A. Bolshanyn

Eight-poles of various designs, including an eight-terminal network with three input and five output terminals, are needed to replace some power objects. Especially when only the input and output characteristics of electrical energy are of interest. The paper presents the eightterminal network equations with three input and five output terminals, establishing a connection between these characteristics. Equations of the A-form establish a connection between the input and output voltages and currents; the B-form equations establish a connection between the output and input voltages and currents; G-form equations establish a connection between the input current, output voltages and output voltage, output currents; H-form equations establish the relationship between the input voltage, output currents and output current, output voltages; the Yform equations establish a connection between the input and output currents and the input and output voltages; The Z-form equations establish the relationship between the input and output voltages and the input and output currents. When implementing these equations, attention should be paid to the difference in the directions of the currents in each individual case.


In this paper, the design of a fuzzy logic controller based quad buck-boost converter with constant input and output current is presented. In contrast with the ordinary step-down-up converters the advanced converter with same duty cycle, a large limit of voltage conversion ratio could be acquired. A proposed converter is designed and studied with an intelligent controller i.e. fuzzy logic controller/FLC and differentiated with the ordinary Proportional-Integral /PIC controller. Finally, the analysis of the presented converter by employing MATLAB/Simulink, simulation results of the presented converter is recorded to substantiate the effectualness and rationality of the output voltage control of Quad buck-boost converter in both step-down-up mode and its comparative analysis is presented where the fuzzy logic has a minimum overshoot and settling time compared to regular PI controller.


Author(s):  
Amir Fathi ◽  
Sarkis Azizian ◽  
Nastaran Sharifan

Sensors are electrical-mechanical elements which are the interface between environment and electrical systems. The input of sensors is characteristics of the environment for example temperature, pressure and etc. and their output is a small electric voltage or current. Their job is to convert environment characteristics to an electric voltage or current at their outputs. Since the output current or voltage is very small, it must be amplified in order to be suitable for use in electronic systems. In this chapter we completely explain the design procedure and characteristics of sensor amplifiers. The important parameters of sensor amplifiers are input and output resistance, gain, unity gain bandwidth and etc. One of the most important characteristics of amplifiers is the linearity of amplification in a way that it must have uniformity for all amplitude voltages or currents in all frequencies of the bandwidth. For this purpose, first the operational amplifier is completely discussed, then the linearity of feedback operation will be explained.


Author(s):  
Aziz Boukadoum ◽  
Tahar Bahi ◽  
Youcef Soufi ◽  
Abla Bouguerne ◽  
Sofiane Oudina

Purpose – The use of power electronic equipment such as conventional AC-DC-AC converters cause several problems in electrical networks and its components. They generate harmonic currents and disturb the electrical power sources; so, it is necessary to research alternative topologies of power electronic converters based on advanced intelligent controllers, which reduce or even eliminate harmonics to achieve energy-saving and environmental protection. The use of matrix converter (MC) is, considered as an attractive solution to maintain pure sinusoidal input and output current waveforms. The paper aims to discuss this issue. Design/methodology/approach – The studied system is composed of a three phase matrix converter (TMC) feeding a linear R, L load and a trees phase rectifier considered as a non-linear load; the proposed control strategy is based on a fuzzy logic controller (FLC) associated to the (space vector modulation) SVM modulation technique, this choice is motivated by the advantages that represent the combination of FLC and SVM in term of power quality enhancement in both input and output sides of MC. Findings – The model is validated based on simulation results that illustrate the effectiveness of the proposed system in term of power quality amelioration. The high performance of the proposed FLC is illustrated in all study cases especially in the case of perturbed input voltage, it is not only able to keep the whole system stable, but also it reduces harmonic distortion THD to respect international standards recommendation. Originality/value – In this paper, an associated linear (RL), non-linear loads and TMC is studied. From the mathematical point of view, the MC is modeled and analyzed. From the technique point of view, the MC allows sinusoidal current absorbance from the network with good qualities in term of harmonic distortion compensation, and high reliability under various loads and disturbed input voltage.


Sign in / Sign up

Export Citation Format

Share Document