A new hybrid sensorless method using a back EMF estimator and a current model of permanent magnet synchronous motor

Author(s):  
Jung-Hyo Lee ◽  
T.ae-Woong Kong ◽  
Won-Cheol Lee ◽  
Chung -Yuen Won ◽  
Jae-Sung Yu
2021 ◽  
Vol 11 (22) ◽  
pp. 10840
Author(s):  
Chenhui Zhou ◽  
Feng Yu ◽  
Chenguang Zhu ◽  
Jingfeng Mao

Permanent magnet synchronous motors and their relevant control techniques have become more and more prevalent in electric vehicle driving applications because of their outstanding performance. This paper studies a simple and effective sensorless scheme based on a current observer for a permanent magnet synchronous motor powered by a three-level inverter, which avoids the injection of a high-frequency signal and the observation of back-electromotive force. In this way, a current observer is constructed to observe d–q-axes currents by relying on an extended-current model. Thereafter, the position and speed of the machine can be extracted from two PI controllers associated with the d–q-axes current-tracking errors. Meanwhile, it takes into account the model predictive current control with neutral-point voltage balance to maintain the stability of the three-level inverter system. In general, this scheme realizes sensorless operation in a full-speed domain and is no longer limited by the types of inverter and method used.


Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 65 ◽  
Author(s):  
Meiling Tang ◽  
Shengxian Zhuang

In this study, a current model predictive controller (MPC) is designed for a permanent magnet synchronous motor (PMSM) where the speed of the motor can be regulated precisely. First, the mathematical model, the specifications, and the drive topology of the PMSM are introduced, followed by an elaboration of the design of the MPC. The MPC is then used to predict the current in a discrete-time calculation. The phase current at the next sampling step can be estimated to compensate the current errors, thereby modifying the three-phase currents of the motor. Next, Simulink modeling of the MPC algorithm is given, with three-phase current waveforms compared when the motor is operated under the designed MPC and a traditional vector control for PMSM. Finally, the speed responses are measured when the motor is controlled by traditional control methods and the MPC approach under varied speed references and loads. In comparison with traditional controllers, both the simulation and the experimental results suggest that the MPC for the PMSM can improve the speed-tracking performance of the motor and that this motor has a fast speed response and small steady-state errors under the rated load.


2006 ◽  
Vol 126 (12) ◽  
pp. 1722-1729 ◽  
Author(s):  
Akeshi Takahashi ◽  
Haruo Koharagi ◽  
Satoshi Kikuchi ◽  
Kazumasa Ide ◽  
Kazuo Shima

Sign in / Sign up

Export Citation Format

Share Document