GaInAsP/InP waveguide dual core spot size converter for optical fiber

Author(s):  
Yohei Sobu ◽  
Hiroshi Hamada ◽  
Tetsuya Mizumoto
Keyword(s):  
2012 ◽  
Vol E95.C (7) ◽  
pp. 1272-1275
Author(s):  
Takanori SUZUKI ◽  
Hideo ARIMOTO ◽  
Takeshi KITATANI ◽  
Aki TAKEI ◽  
Takafumi TANIGUCHI ◽  
...  

Optik ◽  
2015 ◽  
Vol 126 (21) ◽  
pp. 2930-2933 ◽  
Author(s):  
Nai-Fei Ren ◽  
Bing Sun ◽  
Ming-Yang Chen

2018 ◽  
Vol 36 (20) ◽  
pp. 4783-4791 ◽  
Author(s):  
Masatoshi Tokushima ◽  
Hitoshi Kawashima ◽  
Tsuyoshi Horikawa ◽  
Kazuhiko Kurata

2020 ◽  
Vol 8 (2) ◽  
pp. 78-82
Author(s):  
Prosenjit Roy Chowdhury ◽  
◽  

"Advance design and day to day up-gradation of communication system is the requirement of international telecommunication. The optical communication systems involve the effective fiber coupling or splicing to meet the need of long communication channel. When the studies on both the intensive and extensive properties of optical fiber are exploring new research horizons, the effectiveness of such systems can be calibrated with transmission parameters like transmitted fractional power, which is a function of ‘spot size’ as well. Our study of fiber junctions based on fundamental parameters like wavelength, fiber profile index etc. has touched some unrevealed areas and explored some interesting results. The profile index of optical fiber has received less attention compared to other structural parameters of optical fiber but our study at important wavelengths for different profiles has shown that the less-used fiber profiles has some interesting premier outcomes, which can introduce some significant impact on optical fiber based system design and engineering. We have observed almost frequency or wavelength independent transmitted fractional power around the most used 1.55 micrometer wavelengths at some rarely used fiber profile index. Our study predicts the best and worst fiber profiles for transmitted fractional power (T ), at the same time, we have observed the fiber profile index independent region for a band of ‘T’ values. The reporting and its approach are found to be premier in this field. So, our work is reporting a comparison of effective fiber-to-fiber coupling, based on fiber profile index of different fibers. It is also giving a clear view of the wavelength dependency of effective fiber coupling for different fibers having wide range of graded fiber profiles."


Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3911 ◽  
Author(s):  
Haixia Han ◽  
Donglian Hou ◽  
Nannan Luan ◽  
Zhenxu Bai ◽  
Li Song ◽  
...  

A surface plasmon resonance (SPR) sensor based on a dual-side polished microstructured optical fiber (MOF) with a dual core is proposed for a large analyte refractive index (RI; na) detection range. Gold is used as a plasmonic material coated on the polished surface, and analytes can be directly contacted with the gold film. The special structure not only facilitates the fabrication of the sensor, but also can work in the na range of 1.42–1.46 when the background material RI is 1.45, which is beyond the reach of other traditional MOF-SPR sensors. The sensing performance of the sensor was investigated by the wavelength and amplitude interrogation methods. The detailed numerical results showed that the proposed sensor can work effectively in the na range of 1.35–1.47 and exhibits higher sensitivity in the na range of 1.42–1.43.


Sign in / Sign up

Export Citation Format

Share Document