Study on Coupling of Step and Graded Index Single Mode Optical Fiber Considering the Transverse Misalignment

2020 ◽  
Vol 8 (2) ◽  
pp. 78-82
Author(s):  
Prosenjit Roy Chowdhury ◽  
◽  

"Advance design and day to day up-gradation of communication system is the requirement of international telecommunication. The optical communication systems involve the effective fiber coupling or splicing to meet the need of long communication channel. When the studies on both the intensive and extensive properties of optical fiber are exploring new research horizons, the effectiveness of such systems can be calibrated with transmission parameters like transmitted fractional power, which is a function of ‘spot size’ as well. Our study of fiber junctions based on fundamental parameters like wavelength, fiber profile index etc. has touched some unrevealed areas and explored some interesting results. The profile index of optical fiber has received less attention compared to other structural parameters of optical fiber but our study at important wavelengths for different profiles has shown that the less-used fiber profiles has some interesting premier outcomes, which can introduce some significant impact on optical fiber based system design and engineering. We have observed almost frequency or wavelength independent transmitted fractional power around the most used 1.55 micrometer wavelengths at some rarely used fiber profile index. Our study predicts the best and worst fiber profiles for transmitted fractional power (T ), at the same time, we have observed the fiber profile index independent region for a band of ‘T’ values. The reporting and its approach are found to be premier in this field. So, our work is reporting a comparison of effective fiber-to-fiber coupling, based on fiber profile index of different fibers. It is also giving a clear view of the wavelength dependency of effective fiber coupling for different fibers having wide range of graded fiber profiles."

2005 ◽  
Vol 900 ◽  
Author(s):  
A. Dhawan ◽  
J. F. Muth

ABSTRACTMetallic and semi-conducting nano-particles were incorporated into and on the surface of optical fibers to form sensors and other optoelectronic devices on standard telecommunications grade optical fibers. Optical fibers provide a macroscopic platform to exploit the wide range of functionality inherent in nanostructures and nano-particles. Several ways of forming sensitive and robust chemical sensors, based on plasmon resonances of metallic islands and nano-particles, were demonstrated. These nano-particles were formed on tip or surface of the optical fibers by thermal or plasma arc annealing of very thin (4 -12 nm) gold films, that were deposited by electron beam deposition and sputtering. Development of in-line optical fiber structures, involving single mode or multimode optical fibers fused to an arrangement of coreless and graded index fibers, was also carried out. This enabled light propagating in the core of the optical fiber to expand to the surface of the coreless fiber and to effectively interact with nano-particles on the surface and the environment. Metallic and semiconducting nano-particles were also incorporated inside an optical fiber matrix and this could enable us to effectively characterize novel materials and possibly form optical switches. Moreover, these optical fiber sensors and devices were integrated into textile structures to explore the possibility of formation of optoelectronic textiles.


Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 191
Author(s):  
José A. P. Morgado ◽  
Adolfo V. T. Cartaxo

The correlation and power distribution of intercore crosstalk (ICXT) field components of weakly coupled multicore fibers (WC-MCFs) are important properties that determine the statistics of the ICXT and ultimately impact the performance of WC-MCF optical communication systems. Using intensive numerical simulation of the coupled mode equations describing ICXT of a single-mode WC-MCF with intracore birefringence and linear propagation, we assess the mean, correlation, and power distribution of the four ICXT field components of unmodulated polarization-coupled homogeneous and quasi-homogeneous WC-MCFs with a single interfering core in a wide range of birefringence conditions and power distribution among the field components at the interfering core input. It is shown that, for homogeneous and quasi-homogeneous WC-MCFs, zero mean uncorrelated ICXT field components with similar power levels are observed for birefringence correlation length and birefringence beat length in the ranges of 0.5m,10m and 0.1m,10m, respectively, regardless of the distribution of power between the four field components at the interfering core input.


2008 ◽  
Vol 17 (4) ◽  
pp. 254-257 ◽  
Author(s):  
D. Savastru ◽  
M. Popescu ◽  
S. Miclos ◽  
F. Sava ◽  
A. Lorinczi ◽  
...  

2019 ◽  
Vol 11 (4) ◽  
pp. 121
Author(s):  
Andrzej Kaźmierczak ◽  
Mateusz Słowikowski ◽  
Krystian Pavłov ◽  
Maciej Filipiak ◽  
Ryszard Piramidowicz

We present a low-cost scheme for non-permanent optical signal coupling for prospective application in single use photonic integrated chips. The proposed scheme exploits the use of polymer kinoform microlenses. The feasibility of the proposed solution is demonstrated by the experimental investigation of the optical signal coupling from single mode optical fiber (SMF) to the test structure of SixNy integrated waveguide. Full Text: PDF ReferencesM. Smit et al., "An introduction to InP-based generic integration technology," Semiconductor Science and Technology, 29 (8), 083001, 2014 CrossRef R. Baets et al., "Silicon Photonics: silicon nitride versus silicon-on-insulator," in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper Th3J.1. CrossRef K. Shiraishi et al., "A silicon-based spot-size converter between single-mode fibers and Si-wire waveguides using cascaded tapers," Appl. Phys. Lett. 91, 141120 (2007) CrossRef Y. Sobu et al., "GaInAsP/InP waveguide dual core spot size converter for optical fiber,"IEEE Photonic Society 24th Annual Meeting, 469-470, (2011). CrossRef F. Van Laere et al., "Compact and Highly Efficient Grating Couplers Between Optical Fiber and Nanophotonic Waveguides," Journal of Lightwave Technology, vol. 25, no. 1, pp. 151-156, Jan. 2007. CrossRef A. Kaźmierczak et al., "Light coupling and distribution or Si3N4/SiO2 integrated multichannel single mode sensing system," Opt. Eng. 48, 2009, pp. 014401 CrossRef M. Rossi et al., "Arrays of anamorphic phase-matched Fresnel elements for diode-to-fiber coupling," Appl. Opt. 34, 2483-2488 (1995) CrossRef M. Prasciolu et al, "Fabrication of Diffractive Optical Elements On-Fiber for Photonic Applications by Nanolitography," Japanese Journal of Applied Physics, Volume 42, (2003) CrossRef F.Schiappelli et al., "Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling" Microelectronic Engineering Volumes 73-74, pp.397-404 (2004) CrossRef


Photonics ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 373
Author(s):  
Djamila Bouaziz ◽  
Grégoire Chabrol ◽  
Assia Guessoum ◽  
Nacer-Eddine Demagh ◽  
Sylvain Lecler

Shaped optical fiber tips have recently attracted a lot of interest for photonic jet light focusing due to their easy manipulation to scan a sample. However, lensed optical fibers are not new. This study analyzes how fiber tip parameters can be used to control focusing properties. Our study shows that the configurations to generate a photonic jet (PJ) can clearly be distinguished from more classical-lensed fibers focusing. PJ is a highly concentrated, propagative light beam, with a full width at half maximum (FWHM) that can be lower than the diffraction limit. According to the simulations, the PJs are obtained when light is coupled in the guide fundamental mode and when the base diameter of the microlens is close to the core diameter. For single mode fibers or fibers with a low number of modes, long tips with a relatively sharp shape achieve PJ with smaller widths. On the contrary, when the base diameter of the microlens is larger than the fiber core, the focus point tends to move away from the external surface of the fiber and has a larger width. In other words, the optical system (fiber/microlens) behaves in this case like a classical-lensed fiber with a larger focus spot size. The results of this study can be used as guidelines for the tailored fabrication of shaped optical fiber tips according to the targeted application.


1999 ◽  
Author(s):  
Felix Mederer ◽  
Roland Jaeger ◽  
Peter Schnitzer ◽  
Heiko J. Unold ◽  
Max Kicherer ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4150 ◽  
Author(s):  
Soongho Park ◽  
Sunghwan Rim ◽  
Ju Kim ◽  
Jinho Park ◽  
Ik-Bu Sohn ◽  
...  

A method for adjusting the working distance and spot size of a fiber probe while suppressing or enhancing the back-coupling to the lead-in fiber is presented. As the optical fiber probe, a lensed optical fiber (LOF) was made by splicing a short piece of coreless silica fiber (CSF) on a single-mode fiber and forming a lens at the end of the CSF. By controlling the length of the CSF and the radius of lens curvature, the optical properties of the LOF were adjusted. The evolution of the beam in the LOF was analyzed by using the Gaussian ABCD matrix method. To confirm the idea experimentally, 17 LOF samples were fabricated and analyzed theoretically and also experimentally. The results show that it is feasible in designing the LOF to be more suitable for specific or dedicated applications. Applications in physical sensing and biomedical imaging fields are expected.


Sign in / Sign up

Export Citation Format

Share Document