ZVS high — Frequency series resonant inverter for induction heating applications

Author(s):  
K. K. Reshma ◽  
B. B. Binoy
Author(s):  
M. Saravanan ◽  
A. Ramesh Babu

Induction heating application uses uniquely high frequency series resonant inverter for achieving high conversion efficiency. The proposed work focus on improving the practical constraints in requiring the cooling arrangements necessary for switching devices used in resonant inverter due to higher switching and conduction losses. By introducing high frequency Multi- MOSFET based series resonant inverter for the application of induction heating with the following merits such as minimum switching and conduction losses using low voltage grade  of automotive MOSFET’s and higher conversion efficiency with high frequency operation. By adding series combination of low voltage ratedMulti MOSFET switches, temperature variation according to the on-state resistance issues can be avoided by sharing the voltage across the switches depends on number switches connected in the bridge circuit without comprising existing system performance parameter such as THD, power factor, output power. Simulation results also presents to verify that the proposed system achieve higher converter efficiency.


2016 ◽  
Vol 65 (4) ◽  
pp. 827-841
Author(s):  
Palash Pal ◽  
Debabrata Roy ◽  
Avik Datta ◽  
Pradip K. Sadhu ◽  
Atanu Banerjee

Abstract This paper presents a mathematical model of a power controller for a high-frequency induction heating system based on a modified half-bridge series resonant inverter. The output real power is precise over the heating coil, and this real power is processed as a feedback signal that contends a closed-loop topology with a proportional-integral-derivative controller. This technique enables both control of the closed-loop power and determination of the stability of the high-frequency inverter. Unlike the topologies of existing power controllers, the proposed topology enables direct control of the real power of the high-frequency inverter.


2018 ◽  
Vol 3 (12) ◽  
pp. 36-39
Author(s):  
Khairy Sayed ◽  
Farag Abo-Elyousr ◽  
Farid N. Abdelbar ◽  
Heba El-zohri

This paper proposes a cost-effective series resonant inverter employed in applications of induction heating. The proposed inverter operates with high-frequency pulse-density modulation strategy for soft-switching. The high-frequency operation (20 kHz – 100 kHz) of this inverter results in a nearly sinusoidal output that is suitable for relatively fixed output applications such as induction heating. The series resonance circuit comprises an inductor and a capacitor that are in series with the load. The small size of resonating components is due to the high-frequency switching operation. The practical effectiveness of induction heating power supply is substantially proved by implementing a prototype series resonant inverter. To analyze the performance, comparison between the simulation and experimental results is done by using PSIM program


Author(s):  
S. Dhayanandh ◽  
S. Manoharan

Intensive utilization of Induction Heating (IH) innovations can be seen in numerous areas such as manufacturing industries, domestic or house hold and medicinal applications. The development of high switching frequency switches has encouraged the structure of high frequency inverters which are the key component of IH technology. Controlling the power output in a high frequency inverter for IH application is relatively complicated. This paper focuses on designing and developing a typical series resonance inverter and control it by FPGA-based controller. A MOSFET switch-based DC to AC converter is designed and Zero Voltage Switching (ZVS)-based switching strategy is accomplished to acquire less stress on switching devices and greater conversion efficiency. In this technique, secondary switched capacitor cell was proposed for resonant inverter of high frequency. To optimize the performance of the proposed inverter, the FPGA-based control system is implemented. Higher power density is the greatest advantage of this topology. The experimental and simulation model of the proposed series resonant inverter (SRI) for heating applications is developed and simulated using MATLAB/Simulink software.


Sign in / Sign up

Export Citation Format

Share Document