Performance Analysis of a QoS-Enabled Routing Protocol for Wireless Sensor Networks

Author(s):  
Alejandra Cano-Tinoco ◽  
Abraham O. Fapojuwo
Author(s):  
Saloni Dhiman ◽  
Deepti Kakkar ◽  
Gurjot Kaur

Wireless sensor networks (WSNs) consist of several sensor nodes (SNs) that are powered by battery, so their lifetime is limited, which ultimately affects the lifespan and hence performance of the overall networks. Till now many techniques have been developed to solve this problem of WSN. Clustering is among the effective technique used for increasing the network lifespan. In this chapter, analysis of multi-hop routing protocol based on grid clustering with different selection criteria is presented. For analysis, the network is divided into equal-sized grids where each grid corresponds to a cluster and is assigned with a grid head (GH) responsible for collecting data from each SN belonging to respective grid and transferring it to the base station (BS) using multi-hop routing. The performance of the network has been analyzed for different position of BS, different number of grids, and different number of SNs.


2021 ◽  
Vol 13 (2) ◽  
pp. 467-481
Author(s):  
M. M. Hoque ◽  
M. G. Rashed ◽  
M. H. Kabir ◽  
A. F. M. Z. Abadin ◽  
M. I. Pramanik

In most of the cluster-based routing protocols for wireless sensor networks (WSNs), cluster heads (CHs) are selected from the normal sensors which may expire rapidly due to fast energy diminution for such an additional workload. As a consequence, the network lifetime of such cluster-based routing protocol reduces drastically. To resolve these constraints, in this study, we proposed a gateway-based routing protocol-namely Energy-Aware Gateway Based Routing Protocol (EAGBRP) for WSNs. In our proposed protocol, the deployed sensor nodes of a WSN were divided into five logical regions based on their location in the sensing field. The base station (BS) was installed out of the sensing area, and two gateway nodes were inaugurated at two predefined regions of the sensing area. The CH in each region is independent of the other regions and selected based on a weighted election probability. We implemented our proposed routing protocol through simulations. To evaluate the performance of our EAGBRP, we simulated SEP, M-GEAR, and MGBEHA (4GW) protocols. The network lifetime, throughput, and residual energy parameters are utilized for performance analysis. It is revealed from the performance analysis results that WSNs with EAGBRP achieve maximum network lifetime and throughput over other considered protocols with minimum energy consumption.


2013 ◽  
Vol E96.B (1) ◽  
pp. 309-312 ◽  
Author(s):  
Euisin LEE ◽  
Soochang PARK ◽  
Hosung PARK ◽  
Sang-Ha KIM

Author(s):  
A. Radhika ◽  
D. Haritha

Wireless Sensor Networks, have witnessed significant amount of improvement in research across various areas like Routing, Security, Localization, Deployment and above all Energy Efficiency. Congestion is a problem of  importance in resource constrained Wireless Sensor Networks, especially for large networks, where the traffic loads exceed the available capacity of the resources . Sensor nodes are prone to failure and the misbehaviour of these faulty nodes creates further congestion. The resulting effect is a degradation in network performance, additional computation and increased energy consumption, which in turn decreases network lifetime. Hence, the data packet routing algorithm should consider congestion as one of the parameters, in addition to the role of the faulty nodes and not merely energy efficient protocols .Nowadays, the main central point of attraction is the concept of Swarm Intelligence based techniques integration in WSN.  Swarm Intelligence based Computational Swarm Intelligence Techniques have improvised WSN in terms of efficiency, Performance, robustness and scalability. The main objective of this research paper is to propose congestion aware , energy efficient, routing approach that utilizes Ant Colony Optimization, in which faulty nodes are isolated by means of the concept of trust further we compare the performance of various existing routing protocols like AODV, DSDV and DSR routing protocols, ACO Based Routing Protocol  with Trust Based Congestion aware ACO Based Routing in terms of End to End Delay, Packet Delivery Rate, Routing Overhead, Throughput and Energy Efficiency. Simulation based results and data analysis shows that overall TBC-ACO is 150% more efficient in terms of overall performance as compared to other existing routing protocols for Wireless Sensor Networks.


Author(s):  
Neetika Jain ◽  
Sangeeta Mittal

Background: Real Time Wireless Sensor Networks (RT-WSN) have hard real time packet delivery requirements. Due to resource constraints of sensors, these networks need to trade-off energy and latency. Objective: In this paper, a routing protocol for RT-WSN named “SPREAD” has been proposed. The underlying idea is to reserve laxity by assuming tighter packet deadline than actual. This reserved laxity is used when no deadline-meeting next hop is available. Objective: As a result, if due to repeated transmissions, energy of nodes on shortest path is drained out, then time is still left to route the packet dynamically through other path without missing the deadline. Results: Congestion scenarios have been addressed by dynamically assessing 1-hop delays and avoiding traffic on congested paths. Conclusion: Through extensive simulations in Network Simulator NS2, it has been observed that SPREAD algorithm not only significantly reduces miss ratio as compared to other similar protocols but also keeps energy consumption under control. It also shows more resilience towards high data rate and tight deadlines than existing popular protocols.


Sign in / Sign up

Export Citation Format

Share Document