Performance Analysis of Multi-Hop Routing Protocol With Optimized Grid-Based Clustering for Wireless Sensor Network

Author(s):  
Saloni Dhiman ◽  
Deepti Kakkar ◽  
Gurjot Kaur

Wireless sensor networks (WSNs) consist of several sensor nodes (SNs) that are powered by battery, so their lifetime is limited, which ultimately affects the lifespan and hence performance of the overall networks. Till now many techniques have been developed to solve this problem of WSN. Clustering is among the effective technique used for increasing the network lifespan. In this chapter, analysis of multi-hop routing protocol based on grid clustering with different selection criteria is presented. For analysis, the network is divided into equal-sized grids where each grid corresponds to a cluster and is assigned with a grid head (GH) responsible for collecting data from each SN belonging to respective grid and transferring it to the base station (BS) using multi-hop routing. The performance of the network has been analyzed for different position of BS, different number of grids, and different number of SNs.

21st century is considered as the era of communication, and Wireless Sensor Networks (WSN) have assumed an extremely essential job in the correspondence period. A wireless sensor network is defined as a homogeneous or heterogeneous system contains a large number of sensors, namely called nodes used to monitor different environments in cooperatives. WSN is composed of sensor nodes (S.N.), base stations (B.S.), and cluster head (C.H.). The popularity of wireless sensor networks has been increased day by day exponentially because of its wide scope of utilizations. The applications of wireless sensor networks are air traffic control, healthcare systems, home services, military services, industrial & building automation, network communications, VAN, etc. Thus the wide range of applications attracts attackers. To secure from different types of attacks, mainly intruder, intrusion detection based on dynamic state context and hierarchical trust in WSNs (IDSHT) is proposed. The trust evaluation is carried out in hierarchical way. The trust of sensor nodes is evaluated by cluster head (C.H.), whereas the trust of the cluster head is evaluated by a neighbor cluster head or base station. Hence the content trust, honest trust, and interactive trust are put forward by combining direct evaluation and feedback based evaluation in the fixed hop range. In this way, the complexity of trust management is carried in a hierarchical manner, and trust evaluation overhead is minimized.


Author(s):  
Gaurav Kumar Nigam ◽  
Chetna Dabas

Background & Objective: Wireless sensor networks are made up of huge amount of less powered small sensor nodes that can audit the surroundings, collect meaningful data, and send it base station. Various energy management plans that pursue to lengthen the endurance of overall network has been proposed over the years, but energy conservation remains the major challenge as the sensor nodes have finite battery and low computational capabilities. Cluster based routing is the most fitting system to help for burden adjusting, adaptation to internal failure, and solid correspondence to draw out execution parameters of wireless sensor network. Low energy adaptive clustering hierarchy is an efficient clustering based hierarchical protocol that is used to enhance the lifetime of sensor nodes in wireless sensor network. It has some basic flaws that need to be overwhelmed in order to reduce the energy utilization and inflating the nodes lifetime. Methods : In this paper, an effective auxiliary cluster head selection is used to propose a new enhanced GC-LEACH algorithm in order to minimize the energy utilization and prolonged the lifespan of wireless sensor network. Results & Conclusion: Simulation is performed in NS-2 and the outcomes show that the GC-LEACH outperforms conventional LEACH and its existing versions in the context of frequent cluster head rotation in various rounds, number of data packets collected at base station, as well as reduces the energy consumption 14% - 19% and prolongs the system lifetime 8% - 15%.


2021 ◽  
Vol 13 (0203) ◽  
pp. 124-128
Author(s):  
Suneela Kallakunta ◽  
Alluri Sreenivas

Wireless sensor networks (WSNs) are a new kind of wireless networks that are becoming very popular with a large number of civilian and military applications. A wireless sensor network (WSN) is a wireless network that contains distributed independent sensor devices that are meant to monitor physical or environmental conditions. AWireless Sensor Network consists of a set of connected tiny sensor nodes, which communicate with each other we can also interchange information and data. These nodes obtain information on the environment such as temperature, pressure, or humidity and this information is stored in a base station. The latter sends the info to a wired network or activates an alarm or an action, depending on the type of data being monitored.


2020 ◽  
Vol 12 (1) ◽  
pp. 205-224
Author(s):  
Anshu Kumar Dwivedi DUBEY

Purpose ”“ In the recent scenario, there are various issues related to wireless sensor networks such as clustering, routing, packet loss, network strength. The core functionality of primarily wireless sensor networks is sensor nodes that are randomly scattered over a specific area. The sensor senses the data and sends it to the base station. Energy consumption is an important issue in wireless sensor networks. Clustering and cluster head selection is an important method used to extend the lifetime of wireless sensor networks. The main goal of this research article is to reduce energy consumption using a clustering process such as CH determination, cluster formation, and data dissemination.   Methodology/approach/design ”“ The simulation in this paper was finished utilizing MATLAB programming methodology and the proposed technique is contrasted with the LEACH and MOD-LEACH protocols.   Findings ”“ The simulation results of this research show that the energy consumption and dead node ratio are improved of wireless sensor networks as compared to the LEACH and MOD-LEACH algorithms.   Originality/value ”“ In the wireless sensor network there are various constraints energy is one of them. In order to solve this problem use CH selection algorithms to reduce energy consumption and consequently increase network lifetime.


2015 ◽  
Vol 4 (1) ◽  
Author(s):  
Syopiansyah Jaya Putra, Siti Ummi Masruroh

The main goal of this research is concerning clustering protocols to minimize the energy consumption of each node, and reduce number of transmission in wireless sensor network. However, most existing clustering protocols consume large amounts of energy, incurred by cluster formation overhead and fixed-level clustering, particularly when sensor nodes are densely deployed in wireless sensor networks. In this paper, we propose TPR (Teen-Pegasis Routing)  protocol, which is a  low energy adaptive clustering hierarchy and  threshold sensitive  energy  efficient sensor  network protocol.  This proposed algorithm combine both proactive and reactive routing protocol. Keywords: Wireless sensor networks (WSN), LEACH, PEGASIS, TEEN


Author(s):  
Dr. Akhilesh A. Waoo ◽  
◽  
Mr. Virendra Tiwari ◽  

Wireless sensor networks (WSN’s) comprise limited energy small sensor nodes having the ability to monitor the physical conditions and communicate information among the various nodes without requiring any physical medium. Over the last few years, with the rapid advancements in information technology, there has been an increasing interest of various organizations in making the use of wireless sensor networks (WSN’s). The sensor nodes in WSN having limited energy detects an event, collect data and forward this collected data to the base node, called sink node, for further processing and assessment. Few attributes of WSN’s like the energy consumption and lifetime can be impacted by the design and placement of the Sink node. Despite various useful characteristics WSN’s is being considered vulnerable and unprotected. There is a large class of various security attacks that may affect the performance of the system among which sinkhole an adversary attack puts dreadful threats to the security of such networks. Out of various attacks, a sinkhole attack is one of the detrimental types of attacks that brings a compromised node or fabricated node in the network which keeps trying to lures network traffic by advertising its wrong and fake routing update. Sinkhole attacks may have some other serious harmful impacts to exploit the network by launching few other attacks. Some of these attacks are forwarding attacks, selective acknowledge spoofing attacks, and they may drop or modify routing information too. It can also be used to send fake or false information to the base station. This study is analyzing the challenges with sinkhole attacks and exploring the existing available solutions by surveying comparatively which used to detect and mitigate sinkhole attacks in the wireless sensor network.


Author(s):  
Dr. Akhilesh A. Waoo ◽  
◽  
Mr. Virendra Tiwari ◽  

Wireless sensor networks (WSN’s) comprise limited energy small sensor nodes having the ability to monitor the physical conditions and communicate information among the various nodes without requiring any physical medium. Over the last few years, with the rapid advancements in information technology, there has been an increasing interest of various organizations in making the use of wireless sensor networks (WSN’s). The sensor nodes in WSN having limited energy detects an event, collect data and forward this collected data to the base node, called sink node, for further processing and assessment. Few attributes of WSN’s like the energy consumption and lifetime can be impacted by the design and placement of the Sink node. Despite various useful characteristics WSN’s is being considered vulnerable and unprotected. There is a large class of various security attacks that may affect the performance of the system among which sinkhole an adversary attack puts dreadful threats to the security of such networks. Out of various attacks, a sinkhole attack is one of the detrimental types of attacks that brings a compromised node or fabricated node in the network which keeps trying to lures network traffic by advertising its wrong and fake routing update. Sinkhole attacks may have some other serious harmful impacts to exploit the network by launching few other attacks. Some of these attacks are forwarding attacks, selective acknowledge spoofing attacks, and they may drop or modify routing information too. It can also be used to send fake or false information to the base station. This study is analyzing the challenges with sinkhole attacks and exploring the existing available solutions by surveying comparatively which used to detect and mitigate sinkhole attacks in the wireless sensor network.


2018 ◽  
Vol 7 (2.4) ◽  
pp. 153
Author(s):  
Harkesh Sehrawat ◽  
Yudhvir Singh ◽  
Vikas Siwach

A Wireless Sensor Network (WSNs) is a collection of number of sensor nodes which are left open in an unsecured environment. Sensor nodes work and communicate together to attain the desired goals. They are placed at the locations where monitoring is otherwise impossible. Wireless Sensor Networks are resource constrained which may be computational power, memory capacity, battery power etc. As Wireless Sensor Networks are implemented in the unattended environment, they are prone to discrete type of security attacks. Because of their limitations these networks are easily targeted by intruders. Sinkhole attack is one of the security attacks which try to disturb the ongoing communication in wireless sensor network. In sinkhole attack, the intruder or the malicious node try to attract the network traffic towards itself, that sensor nodes will pass data packets through this compromised node thereby manipulating messages which sensor nodes are transferring to the base station. In this paper we analyze the impact of Sinkhole attack on AODV protocol under various conditions. We analyzed the impact of Sinkhole attack on AODV protocol with varying number of attacker nodes.  


2019 ◽  
Vol 8 (4) ◽  
pp. 7876-7881

Wireless sensor network explosive growth has increased demand for radio spectrum and has created problems with spectrum shortage since different wireless services and technologies have already been assigned the full range of wireless sensor networks. Cognitive radio has become a promising solution for resource-controlled wireless sensor network to access the reserved under-used frequency bands resourcefully. Artificial intelligence algorithms allow sensor nodes to avoid crowded congested bands by detecting under utilized licensed bands and to decide to adapt their transmission parameters. However, clusters are based on fixed spectrum distribution and cannot deal with the dynamic spectrum allocation required for future generation networks. Clusters are used to reduce power usage and support scalability of sensor networks. This article proposes an Hybridized Fuzzy Clustering (HFC), which groups adjacent nodes with comparable sets of idle channels and optimally forming power-efficient clusters based on three fuzzy energy parameters, proximity to the base station, and the level of the node to determine the possibility of each node being a cluster head.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4281
Author(s):  
Ngoc-Thanh Dinh ◽  
Younghan Kim

Wireless sensor network (WSN) studies have been carried out for multiple years. At this stage, many real WSNs have been deployed. Therefore, configuration and updating are critical issues. In this paper, we discuss the issues of configuring and updating a wireless sensor network (WSN). Due to a large number of sensor nodes, in addition to the limited resources of each node, manual configuring turns out to be impossible. Therefore, various auto-configuration approaches have been proposed to address the above challenges. In this survey, we present a comprehensive review of auto-configuration mechanisms with the taxonomy of classifications of the existing studies. For each category, we discuss and compare the advantages and disadvantages of related schemes. Lastly, future works are discussed for the remaining issues in this topic.


Sign in / Sign up

Export Citation Format

Share Document