End-to-End Polarization Error Analysis of a Terrestrial Free-Space Quantum Communication Link

Author(s):  
Natasa Pavlovic Tucakovic ◽  
Uday Chandrashekara ◽  
Andrej Krzic ◽  
Fabian Steinlechner
2017 ◽  
Vol 38 (3) ◽  
Author(s):  
Amit Gupta ◽  
Nagpal Shaina

AbstractIntersymbol interference and attenuation of signal are two major parameters affecting the quality of transmission in Free Space Optical (FSO) Communication link. In this paper, the impact of these parameters on FSO communication link is analysed for delivering high-quality data transmission. The performance of the link is investigated under the influence of amplifier in the link. The performance parameters of the link like minimum bit error rate, received signal power and Quality factor are examined by employing erbium-doped fibre amplifier in the link. The effects of amplifier are visualized with the amount of received power. Further, the link is simulated for moderate weather conditions at various attenuation levels on transmitted signal. Finally, the designed link is analysed in adverse weather conditions by using high-power laser source for optimum performance.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Shihan Sajeed ◽  
Thomas Jennewein

AbstractQuantum channels in free-space, an essential prerequisite for fundamental tests of quantum mechanics and quantum technologies in open space, have so far been based on direct line-of-sight because the predominant approaches for photon-encoding, including polarization and spatial modes, are not compatible with randomly scattered photons. Here we demonstrate a novel approach to transfer and recover quantum coherence from scattered, non-line-of-sight photons analyzed in a multimode and imaging interferometer for time-bins, combined with photon detection based on a 8 × 8 single-photon-detector-array. The observed time-bin visibility for scattered photons remained at a high 95% over a wide scattering angle range of −450 to +450, while the individual pixels in the detector array resolve or track an image in its field of view of ca. 0.5°. Using our method, we demonstrate the viability of two novel applications. Firstly, using scattered photons as an indirect channel for quantum communication thereby enabling non-line-of-sight quantum communication with background suppression, and secondly, using the combined arrival time and quantum coherence to enhance the contrast of low-light imaging and laser ranging under high background light. We believe our method will instigate new lines for research and development on applying photon coherence from scattered signals to quantum sensing, imaging, and communication in free-space environments.


2013 ◽  
Vol 15 (5) ◽  
pp. 055408 ◽  
Author(s):  
Ming Sheng ◽  
Peng Jiang ◽  
Qingsong Hu ◽  
Qin Su ◽  
Xiu-xiu Xie

Sign in / Sign up

Export Citation Format

Share Document