Experimental Validation of the Real-Time Control of an Electric-Vehicle Charging Station

Author(s):  
Roman Rudnik ◽  
Jean-Yves Le Boudec ◽  
Sherif Fahmy ◽  
Mario Paolone
2020 ◽  
Vol 56 (5) ◽  
pp. 5750-5761
Author(s):  
Roman Rudnik ◽  
Cong Wang ◽  
Lorenzo Reyes-Chamorro ◽  
Jagdish Achara ◽  
Jean-Yves Le Boudec ◽  
...  

Author(s):  
Vladimir V. NEKRASOV

Developing a microcontroller-based system for controlling the flywheel motor of high-dynamics spacecraft using Russian-made parts and components made it possible to make statement of the problem of searching control function for a preset rotation rate of the flywheel rotor. This paper discusses one of the possible options for mathematical study of the stated problem, namely, application of structural analysis based on graph theory. Within the framework of the stated problem a graph was constructed for generating the new required rate, while in order to consider the stochastic case option the incidence and adjacency matrices were constructed. The stated problem was solved using a power matrix which transforms a set of contiguous matrices of the graph of admissible solution edge sequences, the real-time control function was found. Based on the results of this work, operational trials were run for the developed control function of the flywheel motor rotor rotation rate, a math model was constructed for the real-time control function, and conclusions were drawn about the feasibility of implementing the results of this study. Key words: Control function, graph, incidence matrix, adjacency matrix, power matrix, microcontroller control of the flywheel motor, highly dynamic spacecraft.


2021 ◽  
Vol 13 (11) ◽  
pp. 6163
Author(s):  
Yongyi Huang ◽  
Atsushi Yona ◽  
Hiroshi Takahashi ◽  
Ashraf Mohamed Hemeida ◽  
Paras Mandal ◽  
...  

Electric vehicle charging station have become an urgent need in many communities around the world, due to the increase of using electric vehicles over conventional vehicles. In addition, establishment of charging stations, and the grid impact of household photovoltaic power generation would reduce the feed-in tariff. These two factors are considered to propose setting up charging stations at convenience stores, which would enable the electric energy to be shared between locations. Charging stations could collect excess photovoltaic energy from homes and market it to electric vehicles. This article examines vehicle travel time, basic household energy demand, and the electricity consumption status of Okinawa city as a whole to model the operation of an electric vehicle charging station for a year. The entire program is optimized using MATLAB mixed integer linear programming (MILP) toolbox. The findings demonstrate that a profit could be achieved under the principle of ensuring the charging station’s stable service. Household photovoltaic power generation and electric vehicles are highly dependent on energy sharing between regions. The convenience store charging station service strategy suggested gives a solution to the future issues.


2021 ◽  
Vol 292 ◽  
pp. 126066
Author(s):  
Ridoy Das ◽  
Yue Wang ◽  
Krishna Busawon ◽  
Ghanim Putrus ◽  
Myriam Neaimeh

2021 ◽  
Vol 12 (3) ◽  
pp. 107
Author(s):  
Tao Chen ◽  
Peng Fu ◽  
Xiaojiao Chen ◽  
Sheng Dou ◽  
Liansheng Huang ◽  
...  

This paper presents a systematic structure and a control strategy for the electric vehicle charging station. The system uses a three-phase three-level neutral point clamped (NPC) rectifier to drive multiple three-phase three-level NPC converters to provide electric energy for electric vehicles. This topology can realize the single-phase AC mode, three-phase AC mode, and DC mode by adding some switches to meet different charging requirements. In the case of multiple electric vehicles charging simultaneously, a system optimization control algorithm is adopted to minimize DC-bus current fluctuation by analyzing and reconstructing the DC-bus current in various charging modes. This algorithm uses the genetic algorithm (ga) as the core of computing and reduces the number of change parameter variables within a limited range. The DC-bus current fluctuation is still minimal. The charging station system structure and the proposed system-level optimization control algorithm can improve the DC-side current stability through model calculation and simulation verification.


Sign in / Sign up

Export Citation Format

Share Document