New tool for response characteristic test of optical devices : Optical Spectrogram Scope

Author(s):  
T. Konishi ◽  
H. Goto
Author(s):  
Ernest L. Hall ◽  
J. B. Vander Sande

The present paper describes research on the mechanical properties and related dislocation structure of CdTe, a II-VI semiconductor compound with a wide range of uses in electrical and optical devices. At room temperature CdTe exhibits little plasticity and at the same time relatively low strength and hardness. The mechanical behavior of CdTe was examined at elevated temperatures with the goal of understanding plastic flow in this material and eventually improving the room temperature properties. Several samples of single crystal CdTe of identical size and crystallographic orientation were deformed in compression at 300°C to various levels of total strain. A resolved shear stress vs. compressive glide strain curve (Figure la) was derived from the results of the tests and the knowledge of the sample orientation.


Author(s):  
Yoshiaki. KIYANAGI ◽  
Kazuhiko SOYAMA ◽  
Hirohiko SHIMIZU ◽  
Seiji TASAKI ◽  
Hiroyuki TAKAHASHI

2008 ◽  
Vol 128 (12) ◽  
pp. 1373-1380
Author(s):  
Satoshi Sugahara ◽  
Kouhei Yamada ◽  
Haruhiko Nishio ◽  
Masaharu Edo ◽  
Toshiro Sato ◽  
...  

1982 ◽  
Vol 10 (1) ◽  
pp. 37-54 ◽  
Author(s):  
M. Kumar ◽  
C. W. Bert

Abstract Unidirectional cord-rubber specimens in the form of tensile coupons and sandwich beams were used. Using specimens with the cords oriented at 0°, 45°, and 90° to the loading direction and appropriate data reduction, we were able to obtain complete characterization for the in-plane stress-strain response of single-ply, unidirectional cord-rubber composites. All strains were measured by means of liquid mercury strain gages, for which the nonlinear strain response characteristic was obtained by calibration. Stress-strain data were obtained for the cases of both cord tension and cord compression. Materials investigated were aramid-rubber, polyester-rubber, and steel-rubber.


2020 ◽  
Author(s):  
Haoyang Yu ◽  
Alyxandra Thiessen ◽  
Md Asjad Hossain ◽  
Marc Julian Kloberg ◽  
Bernhard Rieger ◽  
...  

<div><div><div><p>Covalently bonded organic monolayers play important roles in defining the solution processability, ambient stability, and electronic properties of two-dimensional (2D) materials such as Ge nanosheets (GeNSs); they also hold promise of providing avenues for the fabrication of future generation electronic and optical devices. Functionalization of GeNS normally involves surface moieties linked through covalent Ge−C bonds. In the present contribution we extend the scope of surface linkages to include Si−Ge bonding and present the first demonstration of heteronuclear dehydrocoupling of organosilanes to hydride-terminated GeNSs obtained from the deintercalation and exfoliation of CaGe2. We further exploit this new surface reactivity and demonstrated the preparation of directly bonded silicon quantum dot-Ge nanosheet hybrids.</p></div></div></div>


1999 ◽  
Author(s):  
David Rutledge
Keyword(s):  

2018 ◽  
pp. 40-47
Author(s):  
D. I. Volkhin ◽  
G. N. Devyatkov

The development of a new class of broadband matching devices, including active impedance transformers, with the possibility of correcting the phase response is an actual task at present. Synthesis of a broadband active impedance transformer with a phase response corresponding to a second-order lattice X-section in a distributed elemental basis based on the previously presented method for the synthesis of broadband matching devices with predetermined phase response is considered in this paper. As a result of synthesis, the y-matrix of the broadband transforming two-port network is obtained. The functions of its own parameters represented in the form of Foster. Applying various conditions of circuit realizability in the synthesis process, we obtained structures convenient for realization on microwave on regular transmission lines, one of which is investigated at various parameters of a given phase response. As a result of the research, it is found that the structure has a wide ability to reproduce the phase response of a second-order lattice X-section with different parameters, and also reproduce the linear phase response characteristic while maintaining an acceptable level of the power conversion coefficient in a given frequency band. Thus, the efficiency of the previously proposed method of synthesis of broadband matching devices with predetermined phase response is demonstrated, and also the possibilities of active impedance transformers on regular transmission lines are shown.


Sign in / Sign up

Export Citation Format

Share Document