636 mV open circuit voltage multicrystalline silicon solar cells on Polix material: trade-off between short circuit current and open circuit voltage

Author(s):  
M.Y. Ghannam ◽  
S. Sivoththaman ◽  
H.E. Elgamel ◽  
J. Nijs ◽  
M. Rodot ◽  
...  
2019 ◽  
Vol 36 (3) ◽  
pp. 90-94
Author(s):  
Barbara Swatowska ◽  
Piotr Panek ◽  
Dagmara Michoń ◽  
Aleksandra Drygała

Purpose The purpose of this study was the comparison and analysis of the electrical parameters of two kinds of silicon solar cells (mono- and multicrystalline) of different emitter resistance. Design/methodology/approach By controlling of diffusion parameters, silicon mono- (Cz-Si) and multicrystalline (mc-Si) solar cells with different emitter resistance values were produced – 22 and 48 Ω/□. On the basis of current-voltage measurements of cells and contact resistance mapping, the properties of final solar cells based on two different materials were compared. Additionally, the influence of temperature on PV cells efficiency and open circuit voltage (Uoc) were investigated. The PC1D simulation was useful to determine spectral dependence of external quantum efficiency of solar cells with different emitter resistance. The silicon solar cells of 25 cm2 area and 240 µm thickness were investigated. Findings Considering the all stages of cell technology, the best structure is silicon solar cell with sheet resistance (Rsheet) of 45-48 Ω/□. Producing of an emitter with this resistance allowed to obtain cells with a fill factor between 0.725 and 0.758, Uoc between 585 and 612 mV, short circuit current (Isc) between 724 and 820 mA. Originality/value Measurements and analysis confirmed that mono- and multicrystalline silicon solar cells with 48 Ω/□ emitter resistance have better parameters than cells with Rsheet of 22 Ω/□. The contact resistance is the highest for mc-Si with Rsheet of 48 Ω/□ and reaches the value 3.8 Ωcm.


2016 ◽  
Vol 23 (4) ◽  
pp. 583-591 ◽  
Author(s):  
Tadeusz Rodziewicz ◽  
Janusz Teneta ◽  
Aleksander Zaremba ◽  
Maria Wacławek

Abstract In the paper some results on measurement of insolation and „real” cell’s temperature carried out with use of standard silicon solar cells are presented. Two identical cells are applied in such a sensor. Short circuit current of one cell is a direct indication of insolation value and open circuit voltage of the other cell is indirect indication of actual sensor’s temperature but in this case more complex formula must be used for temperature calculation.


2018 ◽  
Vol 9 ◽  
pp. 1802-1808 ◽  
Author(s):  
Katherine Atamanuk ◽  
Justin Luria ◽  
Bryan D Huey

The nanoscale optoelectronic properties of materials can be especially important for polycrystalline photovoltaics including many sensor and solar cell designs. For thin film solar cells such as CdTe, the open-circuit voltage and short-circuit current are especially critical performance indicators, often varying between and even within individual grains. A new method for directly mapping the open-circuit voltage leverages photo-conducting AFM, along with an additional proportional-integral-derivative feedback loop configured to maintain open-circuit conditions while scanning. Alternating with short-circuit current mapping efficiently provides complementary insight into the highly microstructurally sensitive local and ensemble photovoltaic performance. Furthermore, direct open-circuit voltage mapping is compatible with tomographic AFM, which additionally leverages gradual nanoscale milling by the AFM probe essentially for serial sectioning. The two-dimensional and three-dimensional results for CdTe solar cells during in situ illumination reveal local to mesoscale contributions to PV performance based on the order of magnitude variations in photovoltaic properties with distinct grains, at grain boundaries, and for sub-granular planar defects.


NANO ◽  
2019 ◽  
Vol 14 (10) ◽  
pp. 1950127 ◽  
Author(s):  
Farhad Jahantigh ◽  
S. M. Bagher Ghorashi

Perovskite solar cells have recently been considered to be an auspicious candidate for the advancement of future photovoltaic research. A power conversion efficiency (PCE) as high as 22% has been reported to be reached, which can be obtained through an inexpensive and high-throughput solution process. Modeling and simulation of these cells can provide deep insights into their fundamental mechanism of performance. In this paper, two different perovskite solar cells are designed by using COMSOL Multiphysics to optimize the thickness of each layer and the overall thickness of the cell. Electric potential, electron and hole concentrations, generation rate, open-circuit voltage, short-circuit current and the output power were calculated. Finally, PCEs of 20.7% and 26.1% were predicted. Afterwards, according to the simulation results, the role of the hole transport layer (HTL) was investigated and the optimum thickness of the perovskite was measured to be 200[Formula: see text]nm for both cells. Therefore, the spin coating settings are selected so that a coating with this thickness for cell 1 is deposited. In order to compare the performance of HTM layer, solar cells with a Spiro-OMeTAD HTM and without the HTM layer in their structure were fabricated. According to the obtained photovoltaic properties, the solar cell made with Spiro-OMeTAD has a more favorable open-circuit voltage ([Formula: see text]), short-circuit current density ([Formula: see text]), fill factor (FF) and PCE compared to the cell without the HTM layer. Also, hysteresis depends strongly on the perovskite grain size, because large average grain size will lead to an increase in the grain’s contact surface area and a decrease in the density of grain boundaries. Finally, according to the results, it was concluded that, in the presence of a hole transport layer, ion transfer was better and ion accumulation was less intense, and therefore, the hysteresis decreases.


2012 ◽  
Vol 472-475 ◽  
pp. 1846-1850
Author(s):  
Shan Shan Dai ◽  
Gao Jie Zhang ◽  
Xiang Dong Luo ◽  
Jing Xiao Wang ◽  
Wen Jun Chen ◽  
...  

In this work, the effect of aluminum back surface field formed by screen printed various amount of Al paste on the effective rear surface recombination velocity (Seff) and the internal rear reflectance coeffeicient (Rb) of commercial mono-silicon solar cells was investigated. We demonstrated the effect of Seffand Rbon the performance of Al-BSF solar cells by simulating them with PC1D. The simulated results showed that the lower Seffcould get higher open circuit voltage (Voc), at the same time, the larger Rbcould get higher short-circuit current (Isc). Experimentally, we investigated the Seffand Rbthrough depositing Al paste with various amount (3.7, 5, 6, and 8 mg/cm2) for fabricating Al-BSF mono-silicon solar cells. Four group cells were characterized by light I-V, spectral response, hemispherical reflectance and scanning electron microscope (SEM) measurements. It was found that, a minimum Seffof 350 cm/s was gotten from the cells with Al paste of 8 mg/cm2, which was extracted by matching quantum efficiency (QE) from 800 nm to 1200 nm with PC1D, and a maximum Rbof 53.5% was obtained from Al paste of 5 mg/cm2by calculating at 1105 nm with PC1D. When the amount of Al paste was higher than 5mg/cm2, there were less Seffand lower Rb. On the other hand, when Al amount was 3.7mg/cm2, it was too little to form a closed BSF. Based on the SEM graphs and simulations with PC1D, a simple explaination was proposed for the experimental results.


2013 ◽  
Vol 2013 ◽  
pp. 1-4
Author(s):  
Sivakumar Parthasarathy ◽  
P. Neelamegam ◽  
P. Thilakan ◽  
N. Tamilselvan

Multicrystalline silicon solar cell and its module with 18 cells connected in series were mounted on an inclined rack tilted 12° South positioned at latitude of 12.0107° and longitude of 79.856°. Corresponding solar irradiance was measured using an optical Pyranometer. Measured irradiance, open circuit voltage (), and short circuit current () values were analyzed. values of both the cell and module were found saturated at above the critical value of illuminations which were different from each other. The integrated daily efficiency for the cell and module were ~10.25% and ~9.39%, respectively, that were less than their respective standard test condition’s value. The reasons for this drop in efficiencies were investigated and reported.


2014 ◽  
Vol 665 ◽  
pp. 111-114 ◽  
Author(s):  
Ying Huang ◽  
Xiao Ming Shen ◽  
Xiao Feng Wei

In this paper, InAlN/Si single-heterojunction solar cells have been theoretically simulated based on wxAMPS software. The photovoltaic parameters, such as open circuit voltage, short circuit current, fill factor and conversion efficiency were investigated with changing the indium content and thickness of n-InAlN layer. Simulation results show that the optimum efficiency of InAlN/Si solar cells is 23.1% under AM 1.5G spectral illuminations, with the indium content and thickness of n-InAlN layer are 0.65 and 600nm, respectively. The simulation would contribute to design and fabricate high efficiency InAlN/Si solar cells in experiment.


2021 ◽  
Vol 5 (3) ◽  
pp. 242-250
Author(s):  
D. Sergeyev ◽  
K. Shunkeyev ◽  
B. Kuatov ◽  
N. Zhanturina

In this paper, the features of the characteristics of model thin-film solar cells based on the non-toxic multicomponent compound CuZn2AlS4 (CZAS) are considered. The main parameters (open-circuit voltage, short-circuit current, fill factor, efficiency) and characteristics (quantum efficiency, current-voltage characteristic) of thin-film solar cells based on CZAS have been determined. The minimum optimal thickness of the CZAS absorber is found (1-1.25 microns). Deterioration of the performance of solar cells with an increase in operating temperature (280-400 K) is shown. It is revealed that in the wavelength range of 390-500 nm CZAS has a high external quantum efficiency, which allows its use in designs of multi-junction solar cells designed to absorb solar radiation in the specified range. It is shown that the combination of CZAS films with a buffer layer of non-toxic ZnS increases the performance of solar cells.


2014 ◽  
Vol 116 (15) ◽  
pp. 154506 ◽  
Author(s):  
Yong Zhao ◽  
Chunjun Liang ◽  
Mengjie Sun ◽  
Qian Liu ◽  
Fujun Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document