Redundancy resolution with minimum joint elastic deflection for elastic joint redundant robots

Author(s):  
Zhao Jing ◽  
Zhang Yue-Ming
Author(s):  
V. C. Ravi ◽  
Subrata Rakshit ◽  
Ashitava Ghosal

Hyper-redundant robots are characterized by the presence of a large number of actuated joints, many more than the number required to perform a given task. These robots have been proposed and used for many application involving avoiding obstacles or, in general, to provide enhanced dexterity in performing tasks. Making effective use of the extra degrees of freedom or resolution of redundancy have been an extensive topic of research and several methods have been proposed in literature. In this paper, we compare three known methods and show that an algorithm based on a classical curve called the tractrix leads to a more ‘natural’ motion of the hyper-redundant robot with the displacements diminishing from the end-effector to the fixed base. In addition, since the actuators at the base ‘see’ the inertia of all links, smaller motion of the actuators nearer to the base results in a smoother motion of the end-effector as compared to other two approaches. We present simulation and experimental results performed on a prototype eight link planar hyper-redundant manipulator.


Robotica ◽  
2021 ◽  
pp. 1-26
Author(s):  
Yongxiang Wu ◽  
Yili Fu ◽  
Shuguo Wang

Abstract The multi-arm robotic systems consisting of redundant robots are able to conduct more complex and coordinated tasks, such as manipulating large or heavy objects. The challenges of the motion planning and control for such systems mainly arise from the closed-chain constraint and redundancy resolution problem. The closed-chain constraint reduces the configuration space to lower-dimensional subsets, making it difficult for sampling feasible configurations and planning path connecting them. A global motion planner is proposed in this paper for the closed-chain systems, and motions in different disconnected manifolds are efficiently bridged by two type regrasping moves. The regrasping moves are automatically chosen by the planner based on cost-saving principle, which greatly improve the success rate and efficiency. Furthermore, to obtain the optional inverse kinematic solutions satisfying joint physical limits (e.g., joint position, velocity, acceleration limits) in the planning, the redundancy resolution problem for dual redundant robots is converted into a unified quadratic programming problem based on the combination of two diff erent-level optimizing criteria, i.e. the minimization velocity norm (MVN) and infinity norm torque-minimization (INTM). The Dual-MVN-INTM scheme guarantees smooth velocity, acceleration profiles, and zero final velocity at the end of motion. Finally, the planning results of three complex closed-chain manipulation task using two Franka Emika Panda robots and two Kinova Jaco2 robots in both simulation and experiment demonstrate the effectiveness and efficiency of the proposed method.


Robotics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 1
Author(s):  
Omar W. Maaroof ◽  
Mehmet İsmet Can Dede ◽  
Levent Aydin

Redundancy resolution techniques have been widely used for the control of kinematically redundant robots. In this work, one of the redundancy resolution techniques is employed in the mechanical design optimization of a robot arm. Although the robot arm is non-redundant, the proposed method modifies robot arm kinematics by adding virtual joints to make the robot arm kinematically redundant. In the proposed method, a suitable objective function is selected to optimize the robot arm’s kinematic parameters by enhancing one or more performance indices. Then the robot arm’s end-effector is fixed at critical positions while the redundancy resolution algorithm moves its joints including the virtual joints because of the self-motion of a redundant robot. Hence, the optimum values of the virtual joints are determined, and the design of the robot arm is modified accordingly. An advantage of this method is the visualization of the changes in the manipulator’s structure during the optimization process. In this work, as a case study, a passive robotic arm that is used in a surgical robot system is considered and the task is defined as the determination of the optimum base location and the first link’s length. The results indicate the effectiveness of the proposed method.


2011 ◽  
Vol 30 (13) ◽  
pp. 1643-1664 ◽  
Author(s):  
Pawel Malysz ◽  
Shahin Sirouspour

Teleoperation control of kinematically redundant robots requires a strategy for resolving their redundancy. A trilateral two-master/one-slave control approach is proposed for delay-free applications in which the first master controls a primary task control frame, e.g. the slave end-effector frame; meanwhile, another master device can manipulate a secondary task frame attached to the slave robot, e.g. to avoid collision with obstacles in the task environment. Any remaining degrees of motion are resolved autonomously. Teleoperation control is achieved in three steps employing joint-space Lyapunov-based adaptive motion/force controllers, a velocity-level redundancy resolution method, and task-space coordinating reference commands. Priority can be given to either the primary or secondary control frame so that the high-priority task can be transparently carried out without interference from the other task. Whenever applicable, the lower-priority task control frame would be restricted to the natural constraints imposed by prioritization or otherwise, decoupling between the tasks is achieved with the use of an arbitrarily weighted pseudo-inverse. Experiments with a planar teleoperation system consisting of two master devices controlling a closed-chain four degree-of-motion redundant slave robot show the feasibility of the approach.


2010 ◽  
Vol 2 (3) ◽  
Author(s):  
V. C. Ravi ◽  
Subrata Rakshit ◽  
Ashitava Ghosal

Hyper-redundant robots are characterized by the presence of a large number of actuated joints, a lot more than the number required to perform a given task. These robots have been proposed and used for many applications involving avoiding obstacles or, in general, to provide enhanced dexterity in performing tasks. Making effective use of the extra degrees-of-freedom or resolution of redundancy has been an extensive topic of research and several methods have been proposed in literature. In this paper, we compare three known methods and show that an algorithm based on a classical curve, called the tractrix, leads to a more “natural” motion of the hyper-redundant robot with the displacements diminishing from the end-effector to the fixed base. In addition, since the actuators nearer the base “see” a greater inertia due to the links farther away, smaller motion of the actuators nearer the base results in better motion of the end-effector as compared with other two approaches. We present simulation and experimental results performed on a prototype eight-link planar hyper-redundant manipulator.


Sign in / Sign up

Export Citation Format

Share Document