Recognition of complicated gesture in real-time interactive system

Author(s):  
T. Watanabe ◽  
Chil-Woo Lee ◽  
M. Yachida
Keyword(s):  
Author(s):  
Junyi Hou ◽  
Lei Yu ◽  
Yifan Fang ◽  
Shumin Fei

Aiming at the problem that the mixed noise interference caused by the mixed projection noise system is not accurate and the real-time performance is poor, this article proposes an adaptive system switching filtering method based on Bayesian estimation switching rules. The method chooses joint bilateral filtering and improved adaptive median filtering as the filtering subsystems and selects the sub-filtering system suitable for the noise by switching rules to achieve the purpose of effectively removing noise. The simulation experiment was carried out by the self-developed human–computer interactive projection image system platform. Through the subjective evaluation, objective evaluation, and running time comparison analysis, a better filtering effect was achieved, and the balance between the filtering precision and the real-time performance of the interactive system was well obtained. Therefore, the proposed method can be widely applied to various human–computer interactive image filtering systems.


Author(s):  
Yifan Fang ◽  
Lei Yu ◽  
Shumin Fei

In the large-screen interactive system with lidar sensor, due to the low accuracy of the lidar and the instability of the users’ gestures, the system’s recognition and tracking of gesture coordinates cannot be well obtained. Aiming at solving the problems of swaying and drifting gestures of the traditional filtering algorithm with a lidar sensor, this paper proposes a contactless interaction control technology based on switching filtering algorithm, which can realize non-contact high-precision multi-point interaction. The proposed algorithm first recognizes and extracts users’ gestures, and then the gestures are mapped to the screen position. Also, the mouse operation is simulated to realize operations such as selecting, sliding, and zooming in and out. Besides, the algorithm can effectively solve jitter and drift problems caused by scanning defects of radar and instability of the user gesture operations. Experimental results show that by applying the switching filtering algorithm to the contactless human-computer interaction system, the interactive trajectory becomes smoother and more stable compared with the traditional filtering algorithms. The proposed algorithm exhibits excellent accuracy and real-time performance, supporting efficient interaction with multiple people.


2018 ◽  
Vol 14 (7) ◽  
pp. 155014771879085 ◽  
Author(s):  
Yundong Guo ◽  
Shu-Chuan Chu ◽  
Zhenyu Liu ◽  
Chan Qiu ◽  
Hao Luo ◽  
...  

Reconstruction and projection mapping enable us to bring virtual worlds into real spaces, which can give spectators an immersive augmented reality experience. Based on an interactive system with RGB-depth sensor and projector, we present a combined hardware and software solution for surface reconstruction and dynamic projection mapping in real time. In this article, a novel and adaptable calibration scheme is proposed, which is used to estimate approximate models to correct and transform raw depth data. Besides, our system allows for smooth real-time performance using an optimization framework, including denoising and stabilizing. In the entire pipeline, markers are only used in the calibration procedure, and any priors are not needed. Our approach enables us to interact with the target surface in real time, while maintaining correct illumination. It is easy and fast to develop different applications for our system, and some interesting cases are demonstrated at last.


Leonardo ◽  
2016 ◽  
Vol 49 (2) ◽  
pp. 138-147 ◽  
Author(s):  
Thomas Mitchell ◽  
Joseph Hyde ◽  
Philip Tew ◽  
David R. Glowacki

danceroom Spectroscopy is an interactive audiovisual art installation and performance system driven by rigorous algorithms commonly used to simulate and analyze nanoscale atomic dynamics. danceroom Spectroscopy interprets humans as “energy landscapes,” resulting in an interactive system in which human energy fields are embedded within a simulation of thousands of atoms. Users are able to sculpt the atomic dynamics using their movements and experience their interactions visually and sonically in real time. danceroom Spectroscopy has so far been deployed as both an interactive sci-art installation and as the platform for a dance performance called Hidden Fields.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Haena Lee ◽  
Dong Keun Kim

A real-time mobile content player was developed that can recognize and reflect emotions in real time using a smartphone. To determine effective awareness, a photoplethysmogram (PPG), which is a biological signal, was measured to recognize emotional changes in users presented with content intended to induce an emotional response. To avoid the need for a separate sensor to measure the PPG, PPG signals were extracted from the red (R) values of images acquired by the rear camera of a smartphone. To reflect an emotion, the saturation (S) and brightness (V) levels, which are related to the ambience of a content, are changed to reflect the emotional changes of the user within the content itself in real time. Arousal- and relaxation-inducing scenarios were conducted to validate the effectiveness. The samplet-test results show that the average peak-to-peak interval (PPI), which is the time interval between the peaks of PPG signals, was significantly low when viewing the content under the arousal-inducing scenario as compared to when watching regular content, and it was determined that the emotion of the user was led to a state of arousal. Ten university students (five males and five females) participated in the experiment. The users had no cardiac disease and were asked not to drink or smoke before the experiment. The average PPI was significantly higher when the content was viewed in the relaxation-inducing scenario compared to regular content, and it was determined that the emotion of the user was induced to a state of relaxation. The designed emotional content player was confirmed to be an interactive system, in which the video content and user concurrently affect each other through the system.


Sign in / Sign up

Export Citation Format

Share Document