Robust Self-Deployment for a Swarm of Autonomous Mobile Robots with Limited Visibility Range

Author(s):  
Geunho Lee ◽  
Nak Young Chong ◽  
Xavier Defago
2011 ◽  
Vol 22 (03) ◽  
pp. 679-697 ◽  
Author(s):  
LALI BARRIÈRE ◽  
PAOLA FLOCCHINI ◽  
EDUARDO MESA-BARRAMEDA ◽  
NICOLA SANTORO

We consider the uniform scattering problem for a set of autonomous mobile robots deployed in a grid network: starting from an arbitrary placement in the grid, using purely localized computations, the robots must move so to reach in finite time a state of static equilibrium in which they cover uniformly the grid. The theoretical quest is on determining the minimal capabilities needed by the robots to solve the problem. We prove that uniform scattering is indeed possible even for very weak robots. The proof is constructive. We present a provably correct protocol for uniform self-deployment in a grid. The protocol is fully localized, collision-free, and it makes minimal assumptions; in particular: (1) it does not require any direct or explicit communication between robots; (2) it makes no assumption on robots synchronization or timing, hence the robots can be fully asynchronous in all their actions; (3) it requires only a limited visibility range; (4) it uses at each robot only a constant size memory, hence computationally the robots can be simple Finite-State Machines; (5) it does not need a global localization system but only orientation in the grid (e.g., a compass); (6) it does not require identifiers, hence the robots can be anonymous and totally identical.


Author(s):  
Margot M. E. Neggers ◽  
Raymond H. Cuijpers ◽  
Peter A. M. Ruijten ◽  
Wijnand A. IJsselsteijn

AbstractAutonomous mobile robots that operate in environments with people are expected to be able to deal with human proxemics and social distances. Previous research investigated how robots can approach persons or how to implement human-aware navigation algorithms. However, experimental research on how robots can avoid a person in a comfortable way is largely missing. The aim of the current work is to experimentally determine the shape and size of personal space of a human passed by a robot. In two studies, both a humanoid as well as a non-humanoid robot were used to pass a person at different sides and distances, after which they were asked to rate their perceived comfort. As expected, perceived comfort increases with distance. However, the shape was not circular: passing at the back of a person is more uncomfortable compared to passing at the front, especially in the case of the humanoid robot. These results give us more insight into the shape and size of personal space in human–robot interaction. Furthermore, they can serve as necessary input to human-aware navigation algorithms for autonomous mobile robots in which human comfort is traded off with efficiency goals.


2013 ◽  
Vol 14 (3) ◽  
pp. 167-178 ◽  
Author(s):  
Xin Ma ◽  
Ya Xu ◽  
Guo-qiang Sun ◽  
Li-xia Deng ◽  
Yi-bin Li

Sign in / Sign up

Export Citation Format

Share Document