Characteristics of the Bio-enhanced powder activated carbon dynamic membrane reactor for municipal wastewater treatment

Author(s):  
Xiaoya Sun ◽  
Huaqiang Chu ◽  
Yalei Zhang ◽  
Xuefei Zhou
2012 ◽  
Vol 455-456 ◽  
pp. 1278-1284 ◽  
Author(s):  
Xiao Ya Sun ◽  
Hua Qiang Chu ◽  
Ya Lei Zhang ◽  
Xue Fei Zhou

The dynamic membrane reactor (DMBR) combined the advantages of both microbial reactor and dynamic membrane, and it’s a new municipal wastewater treatment technology. This paper summarized the technical processes, mechanisms, characteristics and application of DMBR, and the future research aspects of DMBR is also included.


2012 ◽  
Vol 66 (10) ◽  
pp. 2115-2121 ◽  
Author(s):  
M. Boehler ◽  
B. Zwickenpflug ◽  
J. Hollender ◽  
T. Ternes ◽  
A. Joss ◽  
...  

Micropollutants (MP) are only partly removed from municipal wastewater by nutrient removal plants and are seen increasingly as a threat to aquatic ecosystems and to the safety of drinking water resources. The addition of powder activated carbon (PAC) is a promising technology to complement municipal nutrient removal plants in order to achieve a significant reduction of MPs and ecotoxicity in receiving waters. This paper presents the salient outcomes of pilot- and full-scale applications of PAC addition in different flow schemes for micropollutant removal in municipal wastewater treatment plants (WWTPs). The sorption efficiency of PAC is reduced with increasing dissolved organic carbon (DOC). Adequate treatment of secondary effluent with 5–10 g DOC m−3 requires 10–20 g PAC m−3 of effluent. Counter-current use of PAC by recycling waste PAC from post-treatment in a contact tank with an additional clarifier to the biology tank improved the overall MP removal by 10 to 50% compared with effluent PAC application alone. A dosage of 15 g PAC m−3 to a full-scale flocculation sand filtration system and recycling the backwash water to the biology tank showed similar MP elimination. Due to an adequate mixing regime and the addition of adapted flocculants, a good retention of the fine fraction of the PAC in the deep-bed filter were observed (1–3 g TSS m−3; TSS: total suspended solids). With double use of PAC, only half of the PAC was required to reach MP removal efficiencies similar to the direct single dosage of PAC to the biology tank. Overall, the application of PAC in WWTPs seems to be an adequate and feasible technology for efficient MP elimination (>80%) from wastewater comparable with post ozonation.


2015 ◽  
Vol 72 (4) ◽  
pp. 616-622 ◽  
Author(s):  
Defang Ma ◽  
Baoyu Gao ◽  
Yan Wang ◽  
Qinyan Yue ◽  
Qian Li

A hybrid process with membrane bioreactor (MBR) and powdered activated carbon (PAC), PAC/MBR, was used for real municipal wastewater treatment and reuse. The roles of chlorine dose, contact time, pH and bromide in trihalomethane (THM) formation and speciation during chlorination of the reclaimed water were investigated. Total trihalomethane (TTHM) yield exponentially increased to maximum with increasing chlorine dose (correlation coefficient R2 = 0.98). Prolonging substrate chlorine contact time significantly promoted TTHM formation. Less than 40% of THMs formed in the first 24 h, indicating that the PAC/MBR effluent organic matters were mostly composed of slow-reacting precursors. Increasing pH and bromide concentration facilitated THM formation. Higher chlorine dose and contact time enhanced chloro-THM formation. The bromo-THM formation was favored at near neutral condition. Despite the variation of chlorine dose, contact time and pH, the yield of THM species in order was usually CHCl3 > CHBrCl2 > CHBr2Cl > CHBr3. However, THM speciation shifted from chlorinated species to brominated species with increasing bromide concentration.


2006 ◽  
Vol 6 (4) ◽  
pp. 17-25 ◽  
Author(s):  
A. Ried ◽  
J. Mielcke

The use of ozone and/or UV for water treatment processes is often a combination of an ozone and/or UV-step with additional treatment steps, e.g. biological treatment, flocculation, filtration and activated carbon. Therefore, it is necessary to develop an optimized combination of these different steps. This article will demonstrate the advantages presenting two examples for drinking water treatment and two examples for municipal wastewater treatment.


Sign in / Sign up

Export Citation Format

Share Document