Non-isothermal crystallization,melting and thermal degradation behaviors of LLDPE/nano-CaCO3

Author(s):  
Cao Xinxin ◽  
Zhang Chong ◽  
He Xiaofang ◽  
Wang Libo
e-Polymers ◽  
2010 ◽  
Vol 10 (1) ◽  
Author(s):  
Jiangbo Wang ◽  
Zhong Xin

AbstractThe thermal degradation behaviors of PC/PMPSQ (polymethylphenylsilsesquioxane) systems were investigated by thermogravimetric analysis (TGA) under non-isothermal conditions in nitrogen atmosphere. During non-isothermal degradation, Kissinger and Flynn-Wall-Ozawa methods were used to analyze the thermal degradation process. The results showed that a remarkable decrease in activation energy ( E ) was observed in the early and middle stages of thermal degradation in the presence of PMPSQ, which indicated that the addition of PMPSQ promoted the thermal degradation of PC. Flynn-Wall-Ozawa method further revealed that PMPSQ significantly increased the activation energy of PC thermal degradation in the final stage, which illustrated that the PMPSQ stabilized the char residues and improved the flame retardancy of PC in the final period of thermal degradation process


1985 ◽  
Vol 41 (8) ◽  
pp. T315-T322 ◽  
Author(s):  
Tuyoshi Konomi ◽  
Kaori Mukasa ◽  
Kumiko Ito

e-Polymers ◽  
2017 ◽  
Vol 17 (5) ◽  
pp. 373-381 ◽  
Author(s):  
Xinxin Cao ◽  
Mengqi Wu ◽  
Aiguo Zhou ◽  
You Wang ◽  
Xiaofang He ◽  
...  

AbstractA novel two-dimensional material MXene was used to synthesize nanocomposites with linear low-density polyethylene (LLDPE). The influence of MXene on crystallization and thermal degradation kinetics of LLDPE was investigated. Non-isothermal crystallization kinetics was investigated by using differential scanning calorimetry (DSC). The experimental data was analyzed by Jeziorny theory and the Mo method. It is found that MXene acted as a nucleating agent during the non-isothermal crystallization process, and 2 wt% MXene incorporated in the nanocomposites could accelerate the crystallization rate. Findings from activation energy calculation for non-isothermal crystallization came to the same conclusion. Thermal gravity (TG) analysis of MXene/LLDPE nanocomposites was conducted at different heating rates, and the TG thermograms suggested the nanocomposites showed an improvement in thermal stability. Apparent activation energy (Ea) of thermal degradation was calculated by the Kissinger method, and Ea values of nanocomposites were higher than that of pure LLDPE. The existence of MXene seems to lead to better thermal stability in composites.


2007 ◽  
Vol 92 (7) ◽  
pp. 1265-1278 ◽  
Author(s):  
Sunan Tiptipakorn ◽  
Siriporn Damrongsakkul ◽  
Shinji Ando ◽  
Kasinee Hemvichian ◽  
Sarawut Rimdusit

2017 ◽  
Vol 39 (1) ◽  
pp. 64-75
Author(s):  
Xu Zhu ◽  
Wen-Rui Zheng ◽  
Xiao-Feng Tang ◽  
Wen-Bin Zhang ◽  
Liu-Sheng Zha

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 133
Author(s):  
Chanchira Jubsilp ◽  
Aran Asawakosinchai ◽  
Phattarin Mora ◽  
Duangporn Saramas ◽  
Sarawut Rimdusit

In this paper, the effects of organic based stabilizers (OBS) are investigated and compared with traditional lead (Pb) and calcium zinc (CaZn) heat stabilizers regarding their processability, mechanical property, and thermal degradation behaviors in rigid PVC pipe applications. In addition, the effects of repeated processing cycles on the degree of gelation and the impact strength of the PVC/OBS, PVC/CaZn, and PVC/Pb are also examined. A repeated processing cycle of those three types of the heat stabilizers up to four cycles was found to increase the degree of gelation and proved no significant effect on the impact strength and heat resistance of the resulting PVC samples. The OBS showed a positive effect on preventing the autocatalytic-typed thermal degradation of the PVC samples. This leads to a longer retention time for the initial color change of the PVC/OBS compared to PVC/Pb or PVC/CaZn systems. This characteristic was related to a more uniform fusion behavior of the PVC/OBS, i.e., the lowest gelation speed and the longest fusion time. The non-isothermal kinetic parameter determined by the Kissinger and Flynn–Wall–Ozawa methods of the dehydrochlorination stage of the PVC/OBS was in satisfactory agreement and continued to compare with the PVC/Pb and PVC/CaZn systems. The results indicated that the OBS might decrease the dehydrochlorination rate of PVC, implying that PVC/OBS was more stable than PVC/Pb and PVC/CaZn systems.


2020 ◽  
Vol 107 ◽  
pp. 82-90 ◽  
Author(s):  
Wei Liu ◽  
Na Wang ◽  
Junwei Han ◽  
Jiaqi Xu ◽  
Zihan Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document