Broadband access technologies for very high throughput wireless sensor communication networks

Author(s):  
Gee-Kung Chang ◽  
Wei Jian ◽  
Zhensheng Jia ◽  
Arshad Chowdhury
2010 ◽  
Vol 28 (16) ◽  
pp. 2398-2405 ◽  
Author(s):  
Wei Jian ◽  
Arshad Chowdhury ◽  
Zhensheng Jia ◽  
Claudio I Estevez ◽  
Gee-Kung Chang

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
P.M. Kalaivaanan ◽  
Aduwati Sali ◽  
Raja Syamsul Azmir Raja Abdullah ◽  
Syamsuri Yaakob ◽  
Mandeep Jit Singh ◽  
...  

2018 ◽  
Vol 7 (3.12) ◽  
pp. 1322 ◽  
Author(s):  
Vrince Vimal ◽  
Madhav J Nigam

Clustering of the sensors in wireless sensor network is done to achieve energy efficiency. The nodes, which are unable to join any cluster, are referred to as isolated nodes and tend to transfer information straight to the base station. It is palpable that isolated nodes and cluster heads communicate with the base station and tend to exhaust their energy leaving behind coverage holes. In this paper, we propose the innovative clustering scheme using mobile sink approach to extend networks lifetime. The proposed (ORP-MS) algorithm is implemented in MATLAB 2017a and the results revealed that the proposed algorithm outdid the existing algorithms in terms networks lifetime and energy efficiency simultaneously achieved high throughput.  


2015 ◽  
Vol 13 ◽  
pp. 73-80 ◽  
Author(s):  
I. Ali ◽  
U. Wasenmüller ◽  
N. Wehn

Abstract. Iterative channel decoders such as Turbo-Code and LDPC decoders show exceptional performance and therefore they are a part of many wireless communication receivers nowadays. These decoders require a soft input, i.e., the logarithmic likelihood ratio (LLR) of the received bits with a typical quantization of 4 to 6 bits. For computing the LLR values from a received complex symbol, a soft demapper is employed in the receiver. The implementation cost of traditional soft-output demapping methods is relatively large in high order modulation systems, and therefore low complexity demapping algorithms are indispensable in low power receivers. In the presence of multiple wireless communication standards where each standard defines multiple modulation schemes, there is a need to have an efficient demapper architecture covering all the flexibility requirements of these standards. Another challenge associated with hardware implementation of the demapper is to achieve a very high throughput in double iterative systems, for instance, MIMO and Code-Aided Synchronization. In this paper, we present a comprehensive communication and hardware performance evaluation of low complexity soft-output demapping algorithms to select the best algorithm for implementation. The main goal of this work is to design a high throughput, flexible, and area efficient architecture. We describe architectures to execute the investigated algorithms. We implement these architectures on a FPGA device to evaluate their hardware performance. The work has resulted in a hardware architecture based on the figured out best low complexity algorithm delivering a high throughput of 166 Msymbols/second for Gray mapped 16-QAM modulation on Virtex-5. This efficient architecture occupies only 127 slice registers, 248 slice LUTs and 2 DSP48Es.


Sign in / Sign up

Export Citation Format

Share Document