Patterns of Cooperative Technology Development and Transfer for Software-Engineering-in-the-Large

Author(s):  
Carlos Henrique C. Duarte
2019 ◽  
Vol 49 (3) ◽  
pp. 281-309 ◽  
Author(s):  
David Ribes ◽  
Andrew S Hoffman ◽  
Steven C Slota ◽  
Geoffrey C Bowker

The logic of domains has become a key organizing principle for contemporary computing projects and in broader science policy. The logic parses collectives of expertise into ‘domains’ that are to be studied or engaged in order to inform computational advancements and/or interventions on the domains themselves. The concept of a domain is set against a proposition that there is a more general, domain independent or agnostic technique that can serve to intermediate the domains. This article contrasts instances of this discourse, organizing and techne, drawing from cases in artificial intelligence, software engineering, and science policy to illustrate three ongoing figurations of the logic as i) experimental research, ii) formalization in method and software tools, and iii) a de facto organizing principle for science policy and technology development.


2020 ◽  
Vol 43 ◽  
Author(s):  
Valerie F. Reyna ◽  
David A. Broniatowski

Abstract Gilead et al. offer a thoughtful and much-needed treatment of abstraction. However, it fails to build on an extensive literature on abstraction, representational diversity, neurocognition, and psychopathology that provides important constraints and alternative evidence-based conceptions. We draw on conceptions in software engineering, socio-technical systems engineering, and a neurocognitive theory with abstract representations of gist at its core, fuzzy-trace theory.


Author(s):  
Simon Thomas

Trends in the technology development of very large scale integrated circuits (VLSI) have been in the direction of higher density of components with smaller dimensions. The scaling down of device dimensions has been not only laterally but also in depth. Such efforts in miniaturization bring with them new developments in materials and processing. Successful implementation of these efforts is, to a large extent, dependent on the proper understanding of the material properties, process technologies and reliability issues, through adequate analytical studies. The analytical instrumentation technology has, fortunately, kept pace with the basic requirements of devices with lateral dimensions in the micron/ submicron range and depths of the order of nonometers. Often, newer analytical techniques have emerged or the more conventional techniques have been adapted to meet the more stringent requirements. As such, a variety of analytical techniques are available today to aid an analyst in the efforts of VLSI process evaluation. Generally such analytical efforts are divided into the characterization of materials, evaluation of processing steps and the analysis of failures.


IEE Review ◽  
1992 ◽  
Vol 38 (3) ◽  
pp. 112
Author(s):  
Stuart Bennett

Sign in / Sign up

Export Citation Format

Share Document