On boost pressure control of diesel engines with double-layer passage turbocharger

Author(s):  
Sheng Yang ◽  
Hui Xie ◽  
Kang Song ◽  
Xiaoxu Li ◽  
Zhiqiang Gao
2013 ◽  
Vol 46 (21) ◽  
pp. 270-275
Author(s):  
T. Leroy ◽  
J. Chauvin

2014 ◽  
Vol 50 (3) ◽  
pp. 197-202 ◽  
Author(s):  
Hayato NAKADA ◽  
Peter MARTIN ◽  
Gareth MILTON ◽  
Akiyuki IEMURA ◽  
Akira OHATA

Energies ◽  
2016 ◽  
Vol 9 (7) ◽  
pp. 530 ◽  
Author(s):  
Thivaharan Albin ◽  
Dennis Ritter ◽  
Norman Liberda ◽  
Dirk Abel

Author(s):  
David M. Sykes ◽  
Andrew L. Carpenter ◽  
Jerald G. Wagner ◽  
John M. Gattoni ◽  
Kyle I. Merical ◽  
...  

A design process was defined and implemented for the rapid development of purpose-built, heavy-fueled engines using modern CAE tools. The first exercise of the process was the clean sheet design of the 1.25 L, three-cylinder, turbocharged AMD45 diesel engine. The goal of the AMD45 development program was to create an engine with the power density of an automotive engine and the durability of an industrial/military diesel engine. The AMD45 engine was designed to withstand 8000 hours of operation at 4500 RPM and 45 kW output, while weighing less than 100 kg. Using a small design team, the total development time to a working prototype was less than 15 months. Following the design phase, the AMD45 was fabricated and assembled for first prototype testing. The minimum-material-added design approach resulted in a lightweight engine with a dry weight 89 kg for the basic engine with fuel system. At 4500 RPM and an intake manifold pressure of 2.2 bar abs., the AMD45 produced 62 kW with a peak brake fuel-conversion efficiency greater than 34%. Predictions of brake power and efficiency from the design phase matched to within 5% of experimental values. When the engine is detuned to 56 kW maximum power, the use of multi-pulse injection and boost pressure control allowed the AMD45 to achieve steady state emissions (as measured over the ISO 8178 C1 test cycle) of CO and NOx+NMHC that met the EPA Tier 4 Non-road standard without exhaust after-treatment, with the exception of idle testing. PM emissions were also measured, and a sulfur-tolerant diesel particulate filter has been designed for PM after-treatment.


Author(s):  
Seungwoo Hong ◽  
Inseok Park ◽  
Myoungho Sunwoo

This paper proposes a model-based gain scheduling strategy of a Skogestad internal model control (SIMC)-based boost pressure controller for passenger car diesel engines. This gain scheduling strategy is proposed with a new scheduling variable to handle the nonlinear variable geometric turbocharger (VGT) plant characteristics. The scheduling variable is derived from the pressure ratio between the exhaust and intake manifolds and the exhaust air-to-fuel ratio to estimate the static gain of the VGT plant, which varies widely with change in the engine operating conditions. The proposed static gain model was designed with the scheduling variable, engine speed, and fuel injection quantity. Compared to the steady-state experimental data, the static gain model showed an R-squared value of 0.91. The boost pressure controller had the proportional-integral (PI) structure to allow for online calibration, and the PI gains were determined using the SIMC method. The proposed static gain model for the VGT plant was integrated into the SIMC control structure to obtain the appropriate control gains under wide engine operating area. The proposed control algorithm was compared with a fixed gain boost pressure controller through various step tests of the desired boost pressure. The fixed gain controller showed a large overshoot of 64% when the exhaust gas recirculation (EGR) operating condition was changed. In contrast, the proposed gain scheduled boost pressure controller reduced the overshoot to 12%. The model-based gain scheduling strategy successfully adjusted the control gains to achieve consistent control performance under various engine operating conditions.


2019 ◽  
Vol 27 (1) ◽  
pp. 221-233 ◽  
Author(s):  
Sergey Samokhin ◽  
Jari Hyytia ◽  
Kai Zenger ◽  
Olli Ranta ◽  
Otto Blomstedt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document