Power-performance-area engineering of 5nm nanowire library cells

Author(s):  
Victor Moroz ◽  
Xi-Wei Lin ◽  
Lee Smith ◽  
Joanne Huang ◽  
Munkang Choi ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Goutham Arutchelvan ◽  
Quentin Smets ◽  
Devin Verreck ◽  
Zubair Ahmed ◽  
Abhinav Gaur ◽  
...  

AbstractTwo-dimensional semiconducting materials are considered as ideal candidates for ultimate device scaling. However, a systematic study on the performance and variability impact of scaling the different device dimensions is still lacking. Here we investigate the scaling behavior across 1300 devices fabricated on large-area grown MoS2 material with channel length down to 30 nm, contact length down to 13 nm and capacitive effective oxide thickness (CET) down to 1.9 nm. These devices show best-in-class performance with transconductance of 185 μS/μm and a minimum subthreshold swing (SS) of 86 mV/dec. We find that scaling the top-contact length has no impact on the contact resistance and electrostatics of three monolayers MoS2 transistors, because edge injection is dominant. Further, we identify that SS degradation occurs at short channel length and can be mitigated by reducing the CET and lowering the Schottky barrier height. Finally, using a power performance area (PPA) analysis, we present a roadmap of material improvements to make 2D devices competitive with silicon gate-all-around devices.


2021 ◽  
Author(s):  
Goutham Arutchelvan ◽  
Quentin Smets ◽  
Devin Verreck ◽  
Zubair Ahmed ◽  
Abhinav Gaur ◽  
...  

Abstract Two-dimensional semiconducting materials are considered as ideal candidates for ultimate device scaling. However, a systematic study on the performance and variability impact of scaling the different device dimensions is still lacking. Here we investigate the scaling behavior across 1300 devices fabricated on large-area grown MoS2 material with channel length down to 30 nm, contact length down to 13 nm and capacitive effective oxide thickness (CET) down to 1.9 nm. These devices show best-in-class performance with transconductance of 185 μS/μm and a minimum subthreshold swing (SS) of 86 mV/dec. We find that scaling the top-contact length has no impact on the contact resistance and electrostatics of three monolayers MoS2 transistors, because edge injection is dominant. Further, we identify that SS degradation occurs at short channel length and can be mitigated by reducing the CET and lowering the Schottky barrier height. Finally, using a power performance area (PPA) analysis, we present a roadmap of material improvements to make 2D devices competitive with Silicon gate-all-around devices.


2021 ◽  
Author(s):  
Chih-Cheng Chang ◽  
Shao-Tzu Li ◽  
Tong-Lin Pan ◽  
Chia-Ming Tsai ◽  
I-Ting Wang ◽  
...  

Abstract Device quantization of in-memory computing (IMC) that considers the non-negligible variation and finite dynamic range of practical memory technology is investigated, aiming for quantitatively co-optimizing system performance on accuracy, power, and area. Architecture- and algorithm-level solutions are taken into consideration. Weight-separate mapping, VGG-like algorithm, multiple cells per weight, and fine-tuning of the classifier layer are effective for suppressing inference accuracy loss due to variation and allow for the lowest possible weight precision to improve area and energy efficiency. Higher priority should be given to developing low-conductance and low-variability memory devices that are essential for energy and area-efficiency IMC whereas low bit precision (< 3b) and memory window (<10) are less concerned.


2021 ◽  
Author(s):  
Anirban Sengupta

Design Space Exploration (DSE) is an indispensable segment of the High Level Synthesis (HLS) design process. Moreover, the enormous increase in complexity of the recent Very Large Scale Integration (VLSI) circuits has only been possible due to use of advan ced DSE techniquesduring HLS process. This dissertation presents four automated optimization algorithms and methodologies that are capable to handle various multi-objective problems during design space exploration and high level synthesis of computation intensive applications. Algorithmic solutions to four different branches of DSE problems have been proposed in this dissertation viz. a) Solution to power-performance-area/cost trade-off of Digital Signal Processing (DSP) kernels using priority factor process which also includes deriving analytical mathematical model for modern performance parametric frameworks b) Solution to area-performance-power tradeoff/ power-performance-area tradeoff of DSP kernels using hybridization of fuzzy algorithm and vector design space technique with Self-Correction Scheme c) Solution to dual parametric optimization using efficient multi structure genetic algorithm for integrated scheduling and allocation and d) Solution to control step bound static power optimization using power gradient methodology for integrated scheduling and allocation. Some techniques proposed are equipped with pipelined execution time parameter (based on need), in addition to hardware area, power and cost depending on the user’s objective for exploration of a final solution in a short time. In addition to architecture exploration capability, rapid automated circuit generation of DSP kernels is also possible in a short time for verification and synthesis in Field Programmable Gate Array (FPGA) platforms. The proposed exploration approaches are applied to custom data intensive applications application specific processors/custom processors) or standalone Application Specific Integrated Circuits (ASIC’s). Results of the experiments for proposed approaches on all the standard DSP benchmarks have indicated improvements either in terms of exploration runtime, quality of final solution, reduced execution time, power and area or a multiple combination of all factors when compared to recent approaches.


2021 ◽  
Author(s):  
Anirban Sengupta

Design Space Exploration (DSE) is an indispensable segment of the High Level Synthesis (HLS) design process. Moreover, the enormous increase in complexity of the recent Very Large Scale Integration (VLSI) circuits has only been possible due to use of advan ced DSE techniquesduring HLS process. This dissertation presents four automated optimization algorithms and methodologies that are capable to handle various multi-objective problems during design space exploration and high level synthesis of computation intensive applications. Algorithmic solutions to four different branches of DSE problems have been proposed in this dissertation viz. a) Solution to power-performance-area/cost trade-off of Digital Signal Processing (DSP) kernels using priority factor process which also includes deriving analytical mathematical model for modern performance parametric frameworks b) Solution to area-performance-power tradeoff/ power-performance-area tradeoff of DSP kernels using hybridization of fuzzy algorithm and vector design space technique with Self-Correction Scheme c) Solution to dual parametric optimization using efficient multi structure genetic algorithm for integrated scheduling and allocation and d) Solution to control step bound static power optimization using power gradient methodology for integrated scheduling and allocation. Some techniques proposed are equipped with pipelined execution time parameter (based on need), in addition to hardware area, power and cost depending on the user’s objective for exploration of a final solution in a short time. In addition to architecture exploration capability, rapid automated circuit generation of DSP kernels is also possible in a short time for verification and synthesis in Field Programmable Gate Array (FPGA) platforms. The proposed exploration approaches are applied to custom data intensive applications application specific processors/custom processors) or standalone Application Specific Integrated Circuits (ASIC’s). Results of the experiments for proposed approaches on all the standard DSP benchmarks have indicated improvements either in terms of exploration runtime, quality of final solution, reduced execution time, power and area or a multiple combination of all factors when compared to recent approaches.


Sign in / Sign up

Export Citation Format

Share Document