Study of Unknown Five parameters of Single Diode Model of PV cell and PV module using Analytical and Optimization method with different manufacturing data

Author(s):  
Supriya Ramachandra Patil ◽  
Rahul Agrawal
Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6157
Author(s):  
Chukwuma Ogbonnaya ◽  
Chamil Abeykoon ◽  
Adel Nasser ◽  
Ali Turan

Thermophotovoltaic (TPV) systems generate electricity without the limitations of radiation intermittency, which is the case in solar photovoltaic systems. As energy demands steadily increase, there is a need to improve the conversion dynamics of TPV systems. Consequently, this study proposes a novel radiation-thermodynamic model to gain insights into the thermodynamics of TPV systems. After validating the model, parametric studies were performed to study the dependence of power generation attributes on the radiator and PV cell temperatures. Our results indicated that a silicon-based photovoltaic (PV) module could produce a power density output, thermal losses, and maximum voltage of 115.68 W cm−2, 18.14 W cm−2, and 36 V, respectively, at a radiator and PV cell temperature of 1800 K and 300 K. Power density output increased when the radiator temperature increased; however, the open circuit voltage degraded when the temperature of the TPV cells increased. Overall, for an 80 W PV module, there was a potential for improving the power generation capacity by 45% if the TPV system operated at a radiator and PV cell temperature of 1800 K and 300 K, respectively. The thermal efficiency of the TPV system varied with the temperature of the PV cell and radiator.


Solar energy is an emergent trend suitable for power production in both industrial and household appliances. The distributed renewable resource like solar energy is projected to act as a major responsibility in the forthcoming smart grid applications and technology. For the generation of electricity from solar power, it is essential to analyze the performance characteristics of the solar Photo Voltaic (PV) module, for instance, the power output of a PV panel and the prominent conversion efficiency. The performance of the electrical characterisation of a Photo Voltaic (solar) cells or module delivers the bond among the generated current and voltage on a typical solar PV cell which is termed as a V-I characteristic curve of solar cells. In this paper, a single diode correspondent circuit has been considered to inspect Voltage (V-I) and Power (P-V) characteristics for different insolation levels of a typical 100 W polycrystalline solar PV module. In order to validate the graphical depiction of the solar cell or module operation, M.file in MATLAB software was used. The generated characteristic curves summarise the connection between the current (I) and voltage (V) at the existing state of temperature with different irradiance. The obtained Power-Voltage (P-V) characterisation grant the essential information for building a solar electric power system to drive close up to its maximum peak powerpoint while feasible. The resulted graphs reveal that while considering the single diode model, the level of insolation varies with series resistance and by the generation of photo-current which in turn delivers the rapport of efficiency of solar cells. The proposed system is the initial step to learn a hybrid power system where some other renewable sources can be combined along with a solar power generation system.


Author(s):  
Vishwesh Kamble ◽  
Milind Marathe

Photovoltaic systems are designed to feed either to grid or direct consumption. Due to global concerns, significant growth is being observed in Grid connected solar PV Plants. Since the PV module generates DC power, inverter is needed to interface it with grid. The power generated by a solar PV module depends on surrounding such as irradiance and temperature. This paper presents modelling of solar PV arrays connected to grid-connected plant incorporated with irradiance and temperature variation, to design simulator to study and analyse effect on output power of solar PV arrays with irradiance and temperature variation, also to estimate the output power generated by PV arrays. The mathematical model is designed implemented separately on simulator for each PV components connected in PV systems, which are PV cell, Module, sting, array and field of arrays. The results from simulation based on model are verified by the data collected from power plants and experiments done on solar PV cell.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Costica Nituca ◽  
Gabriel Chiriac ◽  
Dumitru Cuciureanu ◽  
Guoqiang Zhang ◽  
Dong Han ◽  
...  

This article presents a real photovoltaic module with modeling and simulations starting from the model of a photovoltaic (PV) cell. I-V, P-V, and P-I characteristics are simulated for different solar irradiation, temperatures, series resistances, and parallel resistances. For a real photovoltaic module (ALTIUS Module AFP-235W) there are estimated series and parallel resistances for which the energetical performances of the module have optimal values for a solar radiation of 1000 W/m2 and a temperature of the environment of 25°C. Temperature influence over the PV module performances is analyzed by using a thermal model of the ALTIUS Module AFP-235W using the finite element method. A temperature variation on the surface of the PV module is starting from a low value 40.15°C to a high value of 52.07°C. Current and power estimation are within the errors from 1.55% to about 4.3%. Experimental data are measured for the photovoltaic ALTIUS Module AFP-235W for an entire daylight.


Author(s):  
Azadeh Maroufmashat ◽  
Farid Seyyedyn ◽  
Ramin Roshandel ◽  
Mehrdad Boroushaki

Hydrogen is a flexible energy carrier and storage medium and can be generated by electrolysis of water. In this research, hydrogen generation is maximized by optimizing the optimal sizing and operating condition of an electrolyzer directly connected to a PV module. The method presented here is based on Particle swarm optimization algorithm (PSO). The hydrogen, in this study, was produced using a proton exchange membrane (PEM) electrolyzer. The required power was supplied by a photovoltaic module rated at 80 watt. In order to optimize Hydrogen generation, the cell number of the electrolyser and its activity must be 9 and 3, respectively. As a result, it is possible to closely match the electrolyzer polarization curve to the curve connecting PV system’s maximum power points at different irradiation levels. PSO is a novel method in optimization inspiring from observation of bird flocking and fish schooling. Comparing to other optimization method, not only PSO is more efficient and require lower functions of evaluations, but it leads to better results, as well.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 712
Author(s):  
Wei-Sheng Chen ◽  
Yen-Jung Chen ◽  
Cheng-Han Lee ◽  
Yi-Jin Cheng ◽  
Yu-An Chen ◽  
...  

With the dramatic increase of photovoltaic (PV) module installation in solar energy-based industries, the methods for recovering waste solar generators should be emphasized as the backup of the PV market for environmental protection. Crystalline-silicon accounts for most of the worldwide PV market and it contains valuable materials such as high purity of silicon (Si), silver (Ag), copper (Cu), tin (Sn), and lead (Pb). This study can provide an efficient recycling process for valuable materials resourced from waste crystalline-silicon PV module, including Si in the PV cell, and Ag, Cu, Pb, Sn, in PV ribbon. As tempered glass and Ethylene Vinyl Acetate (EVA) resin were removed, the module was separated into two materials, PV ribbon and PV cell. For PV cell purification, Si with purity at 99.84% was recovered by removing impurities such as aluminum (Al) and Ag by two-step leaching and dissolving the impurities. For PV ribbon recovering, purified metal or metal oxide was obtained through the processes of leaching/polishing, extraction, and chemical precipitation. In the polishing process, 99.5% of copper wire was collected. The purities of final products are 99.7% for CuO, 99.47% for PbO, 99.68% for SnO2, and 98.85% for Ag respectively.


2019 ◽  
Vol 8 (4) ◽  
pp. 10843-10846

Solar irradiation is the primary input for the solar PV module. Different types of PV module are used to get high efficiency such as polycrystalline, monocrystalline and amorphous PV module . Among all module polycrystalline PV cell is the most reliable one. Two valuable inputs of a solar PV cell are solar irradiation and temperature. For temperature, solar PV material is very sensitive. However, solar irradiation has many types of wavelengths, and each wavelength has a different effect on solar cell because each wavelength has different energy frequency. Energy frequency is the primary term which affects the output of PV panel.so in this paper two types of experimental analysis has done to know the effect of the colour spectrum, and another experiment has done to know the effect of different types of plastic on PV panel. The experimental data used to verify the efficiency and output power of the system. The results show how the output power and efficiency of PV affected by these two factors.


Author(s):  
Takuya Doi ◽  
Izumi Tsuda ◽  
Koichi Sakuta ◽  
Goichi Matsui

Since the life of crystalline silicon PV modules is mainly determined by that of the encapsulations and not of the cells, it is possible to reuse the cells, except when the cells are physically damaged. By reusing the cells, we can save the significant amount of energy consumed in the manufacture of PV cells, and reduce the total cost of PV modules as a consequence. PV cells are resources, and they should be recycled. However, it has not been easy to remove cells from modules without damaging them because of the very strong adhesiveness of EVA, the most common encapsulant resin. We propose a new PV module with a double encapsulation module (DEM) structure, in which both surfaces of the PV cells are wrapped with non-adhesive transparent films. Here, the concept of DEM is explained and detailed results from the fabrication of single-cell modules are presented. The results of PV cell recovery experiments and weather resistance tests are also shown.


2017 ◽  
Vol 870 ◽  
pp. 257-262
Author(s):  
Shu Tsung Hsu ◽  
Yean San Long ◽  
Teng Chun Wu

Shipping damage is one of the key problems of photovoltaic (PV) failures in the field. In addition, the detailed documents and industry standards are necessary, to avoid cell breakages or cracks during transportation. Therefore, ITRI coordinated some TFs to set up a series of experiments on the performance evaluation for PV-cell and PV-module caused by transportation and shipping. This work aims to standardize the test method for performance criteria of PV-cell and PV-module for transportation, and evaluates a guideline and risk analysis for shipped package of PV product to meet the relevant reliability concerns in a long-term perspective. PV products are shipped not only in a fab by forklift trucks or handling, but also transported outside a fab by shipping vehicles such as truck, train, aircraft and shipboard. Consequently, results were applied to SEMI Doc. 5431 and released as SEMI PV56 [1] by voting in 2014. PV product’s makers and buyers, or any other party interested like package designers, can thus have a common testing standard to refer to when desired.


2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Reza Sirjani ◽  
Hussain Shareef

Recently, accurate modeling of the differences between the current and voltage (I–V) characteristics of solar cells has been the main focus of many research studies. Mostly the results were obtained only for single diode or double diode solar cells, not for both or even for photovoltaic (PV) modules. Moreover, the effect of different shading conditions and different temperatures should be considered; otherwise, the obtained results would be reliable for specific weather conditions and unreliable for all real conditions. In this study, a novel nature-inspired optimization method known as the lightning search algorithm (LSA) was developed to extract the parameters of single diode and double diode solar cells as well as for a PV module. LSA is formulated based on lightning, which originates from thunderstorms. Experimental data from multicrystalline KC200GT solar panels were used to test the single diode and double diode solar panel models, and experimental data from the monocrystalline SQ150-PC solar panels were used to test the PV module model. The experimental data are first collected at the same temperature at five different irradiance levels. In the second stage, variations in temperature are considered at the same irradiance level. The extraction results in the LSA I–V curves accurately fit the entire range of the experimental data, while many fluctuations were seen in the particle swarm optimization (PSO) and bee colony optimization (BCO) I–V curves. The convergence characteristics of LSA were also evaluated in terms of accuracy and speed. For all cases, when LSA was used, the accuracies matched well with the entire range of experimental data. In addition, the value of the objective function using LSA was lower, and that method converged much faster than PSO and BCO.


Sign in / Sign up

Export Citation Format

Share Document