Quality of obstacle distance measurement using Ultrasonic sensor and precision of two Computer Vision-based obstacle detection approaches

Author(s):  
Navya Amin ◽  
Markus Borschbach

our aim is to develop a project that will benefit society. But nowadays it is employed to assist human in surveillance, rescue and recovery missions. This paper presents the prototype model of an UGV which is operated wirelessly through manual navigation commands based on the live video captured from the IP camera mounted on the board. The distance measurement is done by the Ultrasonic sensor from the obstacle and displayed in the LCD. The target tracking as well as attacking is done based on the obstacle and environment situation monitored in the live video. This complete set up and working of the UGV is described further in this paper


2019 ◽  
Vol 29 (1) ◽  
pp. 1226-1234
Author(s):  
Safa Jida ◽  
Hassan Ouallal ◽  
Brahim Aksasse ◽  
Mohammed Ouanan ◽  
Mohamed El Amraoui ◽  
...  

Abstract This work intends to apprehend and emphasize the contribution of image-processing techniques and computer vision in the treatment of clay-based material known in Meknes region. One of the various characteristics used to describe clay in a qualitative manner is porosity, as it is considered one of the properties that with “kill or cure” effectiveness. For this purpose, we use scanning electron microscopy images, as they are considered the most powerful tool for characterising the quality of the microscopic pore structure of porous materials. We present various existing methods of segmentation, as we are interested only in pore regions. The results show good matching between physical estimation and Voronoi diagram-based porosity estimation.


Author(s):  
Kartik Gupta ◽  
Cindy Grimm ◽  
Burak Sencer ◽  
Ravi Balasubramanian

Abstract This paper presents a computer vision system for evaluating the quality of deburring and edge breaking on aluminum and steel blocks. This technique produces both quantitative (size) and qualitative (quality) measures of chamfering operation from images taken with an off-the-shelf camera. We demonstrate that the proposed computer vision system can detect edge chamfering geometry within a 1–2mm range. The proposed technique does not require precise calibration of the camera to the part nor specialized hardware beyond a macro lens. Off-the-shelf components and a CAD model of the original part geometry are used for calibration. We also demonstrate the effectiveness of the proposed technique on edge breaking quality control.


2021 ◽  
Vol 4 ◽  
pp. 74-80
Author(s):  
M. G. Dorrer ◽  
◽  
A.E. Alekhina ◽  

This paper proposes using the k-means method for the controlled adjustment of the training sample for semantic image segmentation in the artificial vision of a smart refrigerator. To solve this problem, a new two-stage architecture for computer vision is proposed. In the proposed architecture, various sets of settings for optimizing the contrast of images are used to classify pixels according to their belonging to fragments of the studied image. Extensive experimental evaluation shows that the proposed method has critical advantages over existing work. Firstly, the obtained pixel classes can be directly clustered into semantic groups using k-means. Secondly, the method can be used for additional training of artificial intelligence in solving the semantic segmentation problem. The developers propose an approach to the correct choice of the number k of centroids to obtain good quality clusters, which is difficult to determine at a high k value. To overcome the problem of initializing the k-means method, an incremental k-means clustering method is proposed, which improves the quality of clusters to reduce the sum of squared errors. Comprehensive experiments have been carried out compared to the traditional k-means algorithm and its new versions to evaluate the performance of the proposed method on synthetically generated datasets and some real-world datasets.


2021 ◽  
Vol 336 ◽  
pp. 07004
Author(s):  
Ruoyu Fang ◽  
Cheng Cai

Obstacle detection and target tracking are two major issues for intelligent autonomous vehicles. This paper proposes a new scheme to achieve target tracking and real-time obstacle detection of obstacles based on computer vision. ResNet-18 deep learning neural network is utilized for obstacle detection and Yolo-v3 deep learning neural network is employed for real-time target tracking. These two trained models can be deployed on an autonomous vehicle equipped with an NVIDIA Jetson Nano motherboard. The autonomous vehicle moves to avoid obstacles and follow tracked targets by camera. Adjusting the steering and movement of the autonomous vehicle according to the PID algorithm during the movement, therefore, will help the proposed vehicle achieve stable and precise tracking.


1993 ◽  
Vol 30 (1) ◽  
pp. 51-64
Author(s):  
Ray Thomas ◽  
Fariborz Zahedi

Hybrid image segmentation within a computer vision hierarchy A generic model of a computer vision system is presented which highlights the critical role of image segmentation. A hybrid segmentation approach, utilising both edge-based and region-based techniques, is proposed for improved quality of segmentation. An image segmentation architecture is outlined and test results are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document