Vertical InAs/InGaAsSb/GaSb Nanowire Tunnel FETs on Si with Drain Field-Plate and EOT = 1 nm Achieving Smin = 32 mV/dec and gm/ID = 100 V-1

Author(s):  
Abinaya Krishnaraja ◽  
Johannes Svensson ◽  
Lars-Erik Wernersson
Keyword(s):  
2021 ◽  
Vol 65 (2) ◽  
Author(s):  
Dujun Zhao ◽  
Zhaoxi Wu ◽  
Chao Duan ◽  
Bo Mei ◽  
Zhongyang Li ◽  
...  

Electronics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 406 ◽  
Author(s):  
Biyan Liao ◽  
Quanbin Zhou ◽  
Jian Qin ◽  
Hong Wang

A 2-D simulation of off-state breakdown voltage (VBD) for AlGaN/GaN high electron mobility transistors (HEMTs) with multi field-plates (FPs) is presented in this paper. The effect of geometrical variables of FP and insulator layer on electric field distribution and VBD are investigated systematically. The FPs can modulate the potential lines and distribution of an electric field, and the insulator layer would influence the modulation effect of FPs. In addition, we designed a structure of HEMT which simultaneously contains gate FP, source FP and drain FP. It is found that the VBD of AlGaN/GaN HEMTs can be improved greatly with the corporation of gate FP, source FP and drain FP. We achieved the highest VBD in the HEMT contained with three FPs by optimizing the structural parameters including length of FPs, thickness of FPs, and insulator layer. For HEMT with three FPs, FP-S alleviates the concentration of the electric field more effectively. When the length of the source FP is 24 μm and the insulator thickness between the FP-S and the AlGaN surface is 1950 nm, corresponding to the average electric field of about 3 MV/cm at the channel, VBD reaches 2200 V. More importantly, the 2D simulation model is based on a real HMET device and will provide guidance for the design of a practical device.


2015 ◽  
Vol 67 (9) ◽  
pp. 1592-1596 ◽  
Author(s):  
Kanjalochan Jena ◽  
Raghunandan Swain ◽  
T. R. Lenka
Keyword(s):  

2016 ◽  
Vol 25 (1) ◽  
pp. 017303 ◽  
Author(s):  
Wei Mao ◽  
Wei-Bo She ◽  
Cui Yang ◽  
Jin-Feng Zhang ◽  
Xue-Feng Zheng ◽  
...  

2013 ◽  
Vol 22 (11) ◽  
pp. 117307 ◽  
Author(s):  
Sheng-Lei Zhao ◽  
Wei-Wei Chen ◽  
Tong Yue ◽  
Yi Wang ◽  
Jun Luo ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1318
Author(s):  
Xiaoyu Xia ◽  
Zhiyou Guo ◽  
Huiqing Sun

In this article, we introduce a new type of AlGaN/GaN high electron mobility transistor (HEMT) with microfield plate (FP). We use Silvaco-ATLAS two-dimensional numerical simulation to calculate the performance of conventional HEMT and HEMT with micro-FP and analyze its principle. By studying a new charge balance method provided by HEMTs and micro-FPs, the physical mechanism of FP adjusting the HEMT potential distribution and channel electric field distribution is analyzed. The new FP structure consists of a drain field plate (D-FP), a source field plate (S-FP) and several micro-gate field plates (G-FP) to improve the output characteristics of HEMTs. By adjusting the distribution of potential and channel electric field, a wider and more uniform channel electric field can be obtained, and the breakdown voltage can be increased to 1278 V. Although the on-resistance of the HEMT is slightly increased to 5.24 Ωmm, it is still lower than other reference values. These results may open up a new and effective method for manufacturing high-power devices for power electronics applications.


Author(s):  
Andrea Minetto ◽  
Nicola Modolo ◽  
Luca Sayadi ◽  
Christian Koller ◽  
Clemens Ostermaier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document