A Machine Learning Approach for Combating Cyber Attacks in Self-Driving Vehicles

Author(s):  
Hunter Berry ◽  
Mai A. Abdel-Malek ◽  
Ahmed S. Ibrahim
Author(s):  
Ong Vienna Lee ◽  
Ahmad Heryanto ◽  
Mohd Faizal Ab Razak ◽  
Anis Farihan Mat Raffei ◽  
Danakorn Nincarean Eh Phon ◽  
...  

<span>The openness of the World Wide Web (Web) has become more exposed to cyber-attacks. An attacker performs the cyber-attacks on Web using malware Uniform Resource Locators (URLs) since it widely used by internet users. Therefore, a significant approach is required to detect malicious URLs and identify their nature attack. This study aims to assess the efficiency of the machine learning approach to detect and identify malicious URLs. In this study, we applied features optimization approaches by using a bio-inspired algorithm for selecting significant URL features which able to detect malicious URLs applications. By using machine learning approach with static analysis technique is used for detecting malicious URLs applications. Based on this combination as well as significant features, this paper shows promising results with higher detection accuracy.  The bio-inspired algorithm: particle swarm optimization (PSO) is used to optimized URLs features. In detecting malicious URLs, it shows that naïve Bayes and support vector machine (SVM) are able to achieve high detection accuracy with rate value of 99%, using URL as a feature.</span>


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1552-P
Author(s):  
KAZUYA FUJIHARA ◽  
MAYUKO H. YAMADA ◽  
YASUHIRO MATSUBAYASHI ◽  
MASAHIKO YAMAMOTO ◽  
TOSHIHIRO IIZUKA ◽  
...  

2020 ◽  
Author(s):  
Clifford A. Brown ◽  
Jonny Dowdall ◽  
Brian Whiteaker ◽  
Lauren McIntyre

2017 ◽  
Author(s):  
Sabrina Jaeger ◽  
Simone Fulle ◽  
Samo Turk

Inspired by natural language processing techniques we here introduce Mol2vec which is an unsupervised machine learning approach to learn vector representations of molecular substructures. Similarly, to the Word2vec models where vectors of closely related words are in close proximity in the vector space, Mol2vec learns vector representations of molecular substructures that are pointing in similar directions for chemically related substructures. Compounds can finally be encoded as vectors by summing up vectors of the individual substructures and, for instance, feed into supervised machine learning approaches to predict compound properties. The underlying substructure vector embeddings are obtained by training an unsupervised machine learning approach on a so-called corpus of compounds that consists of all available chemical matter. The resulting Mol2vec model is pre-trained once, yields dense vector representations and overcomes drawbacks of common compound feature representations such as sparseness and bit collisions. The prediction capabilities are demonstrated on several compound property and bioactivity data sets and compared with results obtained for Morgan fingerprints as reference compound representation. Mol2vec can be easily combined with ProtVec, which employs the same Word2vec concept on protein sequences, resulting in a proteochemometric approach that is alignment independent and can be thus also easily used for proteins with low sequence similarities.


Sign in / Sign up

Export Citation Format

Share Document