Implementation of an internal model controller with anti-reset windup compensation for output voltage tracking of a non-minimum phase dc-dc boost converter using FPGA

Author(s):  
K. Tarakanath ◽  
Sachin C. Patwardhan ◽  
Vivek Agarwal
Enfoque UTE ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 41-53
Author(s):  
Byron Cajamarca ◽  
Óscar Camacho Quintero ◽  
Danilo Chávez ◽  
Paulo Leica ◽  
Marcelo Pozo

This work presents the application of different schemes to control a non-minimum phase Buck-Boost converter. Three control schemes are used. The first controller presented is a PI controller, the second one is Sliding Mode Control and the third one is a combination of two control schemes, Internal Model Control and Sliding Mode Control. The controllers are designed from a Right-Half Plane Zero (RHPZ) reduced order model. The RHPZ model is converted, using Taylor approximation, in a First Order Plus Dead Time (FOPDT) model and after that, the controllers are obtained. The performance of the SMC-IMC is compared against to a PI controller and a SMC. The simulation results show that SMC-IMC improves the converter response, reducing the chattering and presenting better robustness for load changes


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3153
Author(s):  
Allan G. S. Sánchez ◽  
Francisco J. Pérez-Pinal ◽  
Martín A. Rodríguez-Licea ◽  
Cornelio Posadas-Castillo

In this work, the voltage regulation of a boost converter is addressed. A non-integer order PID controller is proposed to deal with the closed-loop instability of the system. The average linear model of the converter is obtained through small-signal approximation. The resulting average linear model is considered divided into minimum and normalized non-minimum phase parts. This approach allows us to design a controller for the minimum phase part of the system, excluding temporarily the non-minimum phase one. A fractional-order PID controller approximation is suggested for the minimum phase part of the system. The proposal for the realization of the electrical controller is described and its implementation is used to corroborate its effectiveness when regulating the output voltage in the boost converter. The fractional-order PID approximation achieves regulation of the output voltage in the boost converter by exhibiting the iso-damping property and using a single control loop, which confirmed its effectiveness in terms of controlling non-minimum phase/variable parameter systems.


Author(s):  
Yan Ti ◽  
Kangcheng Zheng ◽  
Wanzhong Zhao ◽  
Tinglun Song

To improve handling and stability for distributed drive electric vehicles (DDEV), the study on four wheel steering (4WS) systems can improve the vehicle driving performance through enhancing the tracking capability to desired vehicle state. Most previous controllers are either a large amount of calculation, or requires a lot of experimental data, these are relatively time-consuming and laborious. According to the front and rear wheel steering angle of DDEV can be distributed independently, a novel controller named internal model controller with fractional-order filter (IMC-FOF) for 4WS systems is proposed and studied in this paper. The IMC-FOF is designed using the internal model control theory and compared with IMC and PID controller. The influence of time constant and fractional-order parameters which is optimized using quantum genetic algorithms (QGA) on tracking ability of vehicle state are also analyzed. Using a production vehicle as an example, the simulation is performed combining Matlab/Simulink and CarSim. The comparison results indicated that the proposed controller presents performance to distribute the front and rear wheel steering angle for ensuring better tracking capability to desired vehicle state, meanwhile it possesses strong robustness.


Sign in / Sign up

Export Citation Format

Share Document