Radial-basis-functions neural network sliding mode control for underactuated manipulators

Author(s):  
Sonia Mahjoub ◽  
Faical Mnif ◽  
Nabil Derbel
2019 ◽  
Vol 92 (2) ◽  
pp. 237-255 ◽  
Author(s):  
Muhammad Taimoor ◽  
Li Aijun

Purpose The purpose of this paper is to propose an adaptive neural-sliding mode-based observer for the estimation and reconstruction of unknown faults and disturbances for time-varying nonlinear systems such as aircraft, to ensure preciseness in the diagnosis of fault magnitude as well as the shape without enhancement of system complexity and cost. Fault-tolerant control (FTC) strategy based on adaptive neural-sliding mode is also proposed in the existence of faults for ensuring the stability of the faulty system. Design/methodology/approach In this paper, three strategies are presented: adaptive radial basis functions neural network (ARBFNN), conventional radial basis functions neural network (CRBFNN) and integral-chain differentiator. For the purpose of enhancement of fault diagnosis and isolation, a new sliding mode-based concept is introduced for the weight updating parameters of radial basis functions neural network (RBFNN).The main objective of updating the weight parameters adaptively is to enhance the effectiveness of fault diagnosis and isolation without increasing the computational complexities of the system. Results depict the effectiveness of the proposed ARBFNN approach in fault detection (FD) and approximation compared to CRBFNN, integral-chain differentiator and schemes existing in literature. In the second step, the FTC strategy is presented separately for each observer in the presence of unknown faults and failures for ensuring the stability of the system, which is validated on Boeing 747 100/200 aircraft. Findings The proposed adaptive neural-sliding mode approach is investigated, which depicts more effectiveness in numerous situations such as faults, disturbances and uncertainties compared to algorithms used in literature. In this paper, both the fault approximation and isolation and the fault tolerance approaches are studied. Practical implications For the enhancement of safety level as well as for avoiding any kind of damage, timely FD and fault tolerance have always had a significant role; therefore, the algorithms proposed in this research ensure the tolerance of faults and failures, which plays a vital role in practical life for avoiding any kind of damage. Originality/value In this study, a new neural-sliding mode concept is adopted for the adaptive faults approximation and reconstruction, and then the FTC algorithms are studied for each observer separately, whereas in previous studies, only the fault detection and isolation (FDI) or the fault tolerance problems were studied. Results demonstrate the effectiveness of the proposed strategy compared to the approaches given in the literature.


2021 ◽  
Vol 57 (6) ◽  
pp. 1-10
Author(s):  
Tấn Mỹ Lê ◽  
Xa Lil Trần ◽  
Thanh Hùng Trần ◽  
Chí Ngôn Nguyễn

Mặc dù được sử dụng rộng rãi trong công nghiệp, nhưng với tham số cố định, bộ điều khiển tích phân tỷ lệ PI (proportional integral controller) khó thích ứng với sự thay đổi của điều kiện thực tế. Trong khi đó, điều khiển trượt (sliding mode control – SMC) cho đáp ứng ổn định trên các đối tượng phi tuyến, nhưng lại tồn tại một số hạn chế. Bài báo này đề xuất giải pháp kết hợp giữa điều khiển PI và SMC thích nghi dựa trên mạng neuron hàm cơ sở xuyên tâm RBF (radial basis function neural network), gọi tắt là điều khiển PI-SMC. Nguyên tắc kết hợp này là tận dụng ưu điểm thích nghi, bền vững của bộ SMC để khắc phục hạn chế của bộ điều khiển PI, đồng thời sử dụng bộ PI mang năng lượng chủ đạo để đẩy bộ SMC nhanh chóng hội tụ về mặt trượt. Bộ điều khiển PI-SMC được kiểm nghiệm trên thiết bị ổn định lưu lượng RT020 của hãng Gunt-Hamburg. Kết quả cũng cho giá trị khởi tạo của bộ RBF và hệ số mặt trượt ảnh hưởng lớn đến chất lượng điều khiển. Thực nghiệm cũng cho thấy cơ chế trượt thích nghi có thể khắc phục được hạn chế cố định tham số của bộ PI. Với giá trị khởi tạo của bộ tham số được chọn, bộ điều khiển PI-SMC đã cải thiện tốt đáp ứng lưu lượng trên hệ RT020 với độ vọt lố nhỏ hơn 5 (%), thời gian xác lập nhỏ hơn 2 (giây) và sai số xác lập nhỏ hơn 0,3 (lít/giờ).


Author(s):  
Renqiang Wang ◽  
Qinrong Li ◽  
Shengze Miao ◽  
Keyin Miao ◽  
Hua Deng

Abstract: The purpose of this paper was to design an intelligent controller of ship motion based on sliding mode control with a Radial Basis Function (RBF) neural network optimized by the genetic algorithm and expansion observer. First, the improved genetic algorithm based on the distributed genetic algorithm with adaptive fitness and adaptive mutation was used to automatically optimize the RBF neural network. Then, with the compensation designed by the RBF neural network, anti-saturation control was realized. Additionally, the intelligent control algorithm was introduced by Sliding Mode Control (SMC) with the stability theory. A comparative study of sliding mode control integrated with the RBF neural network and proportional–integral–derivative control combined with the fuzzy optimization model showed that the stabilization time of the intelligent control system was 43.75% faster and the average overshoot was reduced by 52% compared with the previous two attempts. Background: It was known that the Proportional-Integral-Derivative (PID) control and self-adaptation control cannot really solve the problems of frequent disturbance from external wind and waves, as well as the problems with ship nonlinearity and input saturation. So, the previous ship motion controller should be transformed by advanced intelligent technology, on the basis of referring to the latest relevant patent design methods. Objective: An intelligent controller of ship motion was designed based on optimized Radial Basis Function Neural Network (RBFNN) in the presence of non-linearity, uncertainty, and limited input. Methods: The previous ship motion controller was remodeled based on Sliding Mode Control (SMC) with RBFNN optimized by improved genetic algorithm and expansion observer. The intelligent control algorithm integrated with genetic neural network solved the problem of system model uncertainty, limited control input, and external interference. Distributed genetic with adaptive fitness and adaptive mutation method guaranteed the adequacy of search and the global optimal convergence results, which enhanced the approximation ability of RBFNN. With the compensation designed by the optimized RBFNN, it was realized anti-saturation control. The chattering caused by external disturbance in SMC controller was reduced by the expansion observer. Results: A comparative study with RBFNN-SMC control and fuzzy-PID control, the stabilization time of the intelligent control system was 43.75% faster, the average overshoot was reduced by 52%, compared to the previous two attempts. Conclusion: The intelligent control algorithm succeed in dealing with the problems of nonlinearity, uncertainty, input saturation, and external interference. The intelligent control algorithm can be applied into research and development ship steering system, which would be created a new patent.


Sign in / Sign up

Export Citation Format

Share Document